1. ID3 算法
ID3 算法是一种典型的决策树(decision tree)算法,C4.5, CART都是在其基础上发展而来。决策树的叶子节点表示类标号,非叶子节点作为属性测试条件。从树的根节点开始,将测试条件用于检验记录,根据测试结果选择恰当的分支;直至到达叶子节点,叶子节点的类标号即为该记录的类别。
ID3采用信息增益(information gain)作为分裂属性的度量,最佳分裂等价于求解最大的信息增益。
信息增益=parent节点熵 - 带权的子女节点的熵
ID3算法流程如下:
1.如果节点的所有类标号相同,停止分裂;
2.如果没有feature可供分裂,根据多数表决确定该节点的类标号,并停止分裂;
3.选择最佳分裂的feature,根据选择feature的值逐一进行分裂;递归地构造决策树。
源代码(从[1]中拿过来):
from math import log import operator import matplotlib.pyplot as plt def calcEntropy(dataSet): """calculate the shannon entropy""" numEntries=len(dataSet) labelCounts={} for entry in dataSet: entry_label=entry[-1] if entry_label not in labelCounts: labelCounts[entry_label]=0 labelCounts[entry_label]+=1 entropy=0.0 for key in labelCounts: prob=float(labelCounts[key])/numEntries entropy-=prob*log(prob,2) return entropy def createDataSet(): dataSet = [[1, 1, ‘yes‘], [1, 1, ‘yes‘], [1, 0, ‘no‘], [0, 1, ‘no‘], [0, 1, ‘no‘]] labels = [‘no surfacing‘,‘flippers‘] return dataSet, labels def splitDataSet(dataSet,axis,pivot): """split dataset on feature""" retDataSet=[] for entry in dataSet: if entry[axis]==pivot: reduced_entry=entry[:axis] reduced_entry.extend(entry[axis+1:]) retDataSet.append(reduced_entry) return retDataSet def bestFeatureToSplit(dataSet): """chooose the best feature to split """ numFeatures=len(dataSet[0])-1 baseEntropy=calcEntropy(dataSet) bestInfoGain=0.0; bestFeature=-1 for axis in range(numFeatures): #create unique list of class labels featureList=[entry[axis] for entry in dataSet] uniqueFeaList=set(featureList) newEntropy=0.0 for value in uniqueFeaList: subDataSet=splitDataSet(dataSet,axis,value) prob=float(len(subDataSet))/len(dataSet) newEntropy+=prob*calcEntropy(subDataSet) infoGain=baseEntropy-newEntropy #find the best infomation gain if infoGain>bestInfoGain: bestInfoGain=infoGain bestFeature=axis return bestFeature def majorityVote(classList): """take a majority vote""" classCount={} for vote in classList: if vote not in classCount.keys(): classCount[vote]=0 classCount+=1 sortedClassCount=sorted(classCount.iteritems(), key=operator.itemgetter(1),reverse=True) return sortedClassCount[0][0] def createTree(dataSet,labels): classList=[entry[-1] for entry in dataSet] #stop when all classes are equal if classList.count(classList[0])==len(classList): return classList[0] #when no more features, return majority vote if len(dataSet[0])==1: return majorityVote(classList) bestFeature=bestFeatureToSplit(dataSet) bestFeatLabel=labels[bestFeature] myTree={bestFeatLabel:{}} del(labels[bestFeature]) subLabels=labels[:] featureList=[entry[bestFeature] for entry in dataSet] uniqueFeaList=set(featureList) #split dataset according to the values of the best feature for value in uniqueFeaList: subDataSet=splitDataSet(dataSet,bestFeature,value) myTree[bestFeatLabel][value]=createTree(subDataSet,subLabels) return myTree
分类结果可视化
2. Referrence
[1] Peter Harrington, machine learning in action.
时间: 2024-09-30 17:50:54