uva10405-最长公共子序列

题目链接 http://acm.hust.edu.cn/vjudge/problem/19201

解题思路

LCS

代码

#include<stdio.h>
#include<string.h>
#define MAX_LEN 1005
char str[MAX_LEN], re[MAX_LEN];
int dp[MAX_LEN];
int main()
{
    str[0] = re[0] = ‘0‘;
    while(gets(str+1) && gets(re+1)) {
        memset(dp, 0, sizeof(dp));
        int n = strlen(str) - 1;
        int m = strlen(re) - 1;
        int x;
        for(int i=1; i<=n; i++) {
            x = dp[0];
            for(int j=1; j<=m; j++) {
                if(str[i] == re[j]) { int y = dp[j]; dp[j] = x + 1; x = y; }
                else { x = dp[j]; dp[j] = dp[j]>dp[j-1]?dp[j]:dp[j-1]; }
            }
        }
        printf("%d\n", dp[m]);
    }
    return 0;
}
时间: 2024-10-01 04:58:02

uva10405-最长公共子序列的相关文章

简单Dp----最长公共子序列,DAG最长路,简单区间DP等

/* uva 111 * 题意: * 顺序有变化的最长公共子序列: * 模板: */ #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; int a[100]; int mu[100]; int Dp[100][100]; int main() { int n,x; scanf("%d", &n

LIS(最长递增子序列)和LCS(最长公共子序列)的总结

最长公共子序列(LCS):O(n^2) 两个for循环让两个字符串按位的匹配:i in range(1, len1) j in range(1, len2) s1[i - 1] == s2[j - 1], dp[i][j] = dp[i - 1][j -1] + 1; s1[i - 1] != s2[j - 1], dp[i][j] = max (dp[i - 1][j], dp[i][j - 1]); 初始化:dp[i][0] = dp[0][j] = 0; 伪代码: dp[maxn1][ma

最长公共子序列的代码实现

关于最长公共子序列(LCS)的相关知识,http://blog.csdn.net/liufeng_king/article/details/8500084 这篇文章讲的比较好,在此暂时不再详说. 以下是我代码实现两种方式:递归+递推: 1 #include <bits/stdc++.h> 2 using namespace std; 3 int A[100]; 4 int B[100]; 5 6 //int B[]={2,3,5,6,9,8,4}; 7 int d[100][100]={0};

NYOJ 36 &amp;&amp;HDU 1159 最长公共子序列(经典)

链接:click here 题意:tip:最长公共子序列也称作最长公共子串(不要求连续),英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已知序列的最长公共子序列. 输入 第一行给出一个整数N(0<N<100)表示待测数据组数 接下来每组数据两行,分别为待测的两组字符串.每个字符串长度不大于1000. 输出 每组测试数据输出一个整数,表示最长公共子序列长度.每组

poj1159 Palindrome(最长公共子序列)

Palindrome Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 52966   Accepted: 18271 Description A palindrome is a symmetrical string, that is, a string read identically from left to right as well as from right to left. You are to write a

最长公共子序列(LCS)问题

最长公共子串(Longest Common Substirng)和最长公共子序列(Longest Common Subsequence,LCS)的区别为:子串是串的一个连续的部分,子序列则是从不改变序列的顺序,而从序列中去掉任意的元素而获得新的序列:也就是说,子串中字符的位置必须是连续的,子序列则可以不必连续. 1.序列str1和序列str2 ·长度分别为m和n: ·创建1个二维数组L[m.n]: ·初始化L数组内容为0 ·m和n分别从0开始,m++,n++循环: - 如果str1[m] ==

Longest Common Substring(最长公共子序列)

Longest Common Substring Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 37 Accepted Submission(s): 28   Problem Description Given two strings, you have to tell the length of the Longest Common Su

最长公共子序列针对小字符集的算法

一般对于两个字符串,长度分别为n和m,其时间复杂度为O(nm). 但是针对小字符集的情况,可以把复杂度降低到O(n^2),其中n为两个字符串较短的长度.这种方法对于两个字符串长度相差很大的情况比O(nm)要优化很多. 就假设所有的字符都是小写字母,这样就符合小字符集的前提了.设较短的字符串为S1,较长的字符串为S2.字符串下标从1开始. S2字符串每个位置右边第一个字符是可以通过O(km)预处理得到的.其中k为小字符集的字符个数,m为较长的那个字符串的长度. 用next[i][j]表示S2[i]

动态规划-最长公共子序列

(1).问题描述:给出2个序列,x是从1到m,y是从1到n,找出x和y的最长公共子序列? x:A B C B D A B y:B D C A B A 则:最长公共子序列长度为4,BDAB BCAB BCBA均为LCS(最长公共子序列): 模型实现图: (2).问题解决 代码实现了最长公共子序列的长度 #include<stdio.h> #define N    10 int LCS(int *a, int count1, int *b, int count2); int LCS(int *a,

POJ 1458 Common Subsequence 最长公共子序列

题目大意:求两个字符串的最长公共子序列 题目思路:dp[i][j] 表示第一个字符串前i位 和 第二个字符串前j位的最长公共子序列 #include<stdio.h> #include<string.h> #include<stdlib.h> #include<math.h> #include<iostream> #include<algorithm> #define INF 0x3f3f3f3f #define MAXSIZE 10