mysql --The MEMORY Storage Engine--官方文档

原文地址:http://dev.mysql.com/doc/refman/5.7/en/memory-storage-engine.html

The MEMORY storage engine (formerly known as HEAP) creates special-purpose tables with contents that are stored in memory. Because the data is vulnerable to crashes, hardware issues, or power outages, only use these tables as temporary work areas or read-only caches for data pulled from other tables.

Table 15.4 MEMORY Storage Engine Features

Storage limits RAM Transactions No Locking granularity Table
MVCC No Geospatial data type support No Geospatial indexing support No
B-tree indexes Yes T-tree indexes No Hash indexes Yes
Full-text search indexes No Clustered indexes No Data caches N/A
Index caches N/A Compressed data No Encrypted data[a] Yes
Cluster database support No Replication support[b] Yes Foreign key support No
Backup / point-in-time recovery[c] Yes Query cache support Yes Update statistics for data dictionary Yes

[a] Implemented in the server (via encryption functions), rather than in the storage engine.

[b] Implemented in the server, rather than in the storage engine.

[c] Implemented in the server, rather than in the storage engine.

When to Use MEMORY or MySQL Cluster.  Developers looking to deploy applications that use the MEMORYstorage engine for important, highly available, or frequently updated data should consider whether MySQL Cluster is a better choice. A typical use case for the MEMORY engine involves these characteristics:

  • Operations involving transient, non-critical data such as session management or caching. When the MySQL server halts or restarts, the data in MEMORY tables is lost.
  • In-memory storage for fast access and low latency. Data volume can fit entirely in memory without causing the operating system to swap out virtual memory pages.
  • A read-only or read-mostly data access pattern (limited updates).

MySQL Cluster offers the same features as the MEMORY engine with higher performance levels, and provides additional features not available with MEMORY:

  • Row-level locking and multiple-thread operation for low contention between clients.
  • Scalability even with statement mixes that include writes.
  • Optional disk-backed operation for data durability.
  • Shared-nothing architecture and multiple-host operation with no single point of failure, enabling 99.999% availability.
  • Automatic data distribution across nodes; application developers need not craft custom sharding or partitioning solutions.
  • Support for variable-length data types (including BLOB and TEXT) not supported by MEMORY.

For a white paper with more detailed comparison of the MEMORY storage engine and MySQL Cluster, see Scaling Web Services with MySQL Cluster: An Alternative to the MySQL Memory Storage Engine. This white paper includes a performance study of the two technologies and a step-by-step guide describing how existing MEMORYusers can migrate to MySQL Cluster.

Performance Characteristics

MEMORY performance is constrained by contention resulting from single-thread execution and table lock overhead when processing updates. This limits scalability when load increases, particularly for statement mixes that include writes.

Despite the in-memory processing for MEMORY tables, they are not necessarily faster than InnoDB tables on a busy server, for general-purpose queries, or under a read/write workload. In particular, the table locking involved with performing updates can slow down concurrent usage of MEMORY tables from multiple sessions.

Depending on the kinds of queries performed on a MEMORY table, you might create indexes as either the default hash data structure (for looking up single values based on a unique key), or a general-purpose B-tree data structure (for all kinds of queries involving equality, inequality, or range operators such as less than or greater than). The following sections illustrate the syntax for creating both kinds of indexes. A common performance issue is using the default hash indexes in workloads where B-tree indexes are more efficient.

Physical Characteristics of MEMORY Tables

The MEMORY storage engine associates each table with one disk file, which stores the table definition (not the data). The file name begins with the table name and has an extension of .frm.

MEMORY tables have the following characteristics:

  • Space for MEMORY tables is allocated in small blocks. Tables use 100% dynamic hashing for inserts. No overflow area or extra key space is needed. No extra space is needed for free lists. Deleted rows are put in a linked list and are reused when you insert new data into the table. MEMORY tables also have none of the problems commonly associated with deletes plus inserts in hashed tables.
  • MEMORY tables use a fixed-length row-storage format. Variable-length types such as VARCHAR are stored using a fixed length.
  • MEMORY tables cannot contain BLOB or TEXT columns.
  • MEMORY includes support for AUTO_INCREMENT columns.
  • Non-TEMPORARY MEMORY tables are shared among all clients, just like any other non-TEMPORARY table.

DDL Operations for MEMORY Tables

To create a MEMORY table, specify the clause ENGINE=MEMORY on the CREATE TABLE statement.

CREATE TABLE t (i INT) ENGINE = MEMORY;

As indicated by the engine name, MEMORY tables are stored in memory. They use hash indexes by default, which makes them very fast for single-value lookups, and very useful for creating temporary tables. However, when the server shuts down, all rows stored in MEMORY tables are lost. The tables themselves continue to exist because their definitions are stored in .frm files on disk, but they are empty when the server restarts.

This example shows how you might create, use, and remove a MEMORY table:

mysql> CREATE TABLE test ENGINE=MEMORY
    ->     SELECT ip,SUM(downloads) AS down
    ->     FROM log_table GROUP BY ip;
mysql> SELECT COUNT(ip),AVG(down) FROM test;
mysql> DROP TABLE test;

The maximum size of MEMORY tables is limited by the max_heap_table_size system variable, which has a default value of 16MB. To enforce different size limits for MEMORY tables, change the value of this variable. The value in effect for CREATE TABLE, or a subsequent ALTER TABLE or TRUNCATE TABLE, is the value used for the life of the table. A server restart also sets the maximum size of existing MEMORY tables to the globalmax_heap_table_size value. You can set the size for individual tables as described later in this section.

Indexes

The MEMORY storage engine supports both HASH and BTREE indexes. You can specify one or the other for a given index by adding a USING clause as shown here:

CREATE TABLE lookup
    (id INT, INDEX USING HASH (id))
    ENGINE = MEMORY;
CREATE TABLE lookup
    (id INT, INDEX USING BTREE (id))
    ENGINE = MEMORY;

For general characteristics of B-tree and hash indexes, see Section 8.3.1, “How MySQL Uses Indexes”.

MEMORY tables can have up to 64 indexes per table, 16 columns per index and a maximum key length of 3072 bytes.

If a MEMORY table hash index has a high degree of key duplication (many index entries containing the same value), updates to the table that affect key values and all deletes are significantly slower. The degree of this slowdown is proportional to the degree of duplication (or, inversely proportional to the index cardinality). You can use a BTREE index to avoid this problem.

MEMORY tables can have nonunique keys. (This is an uncommon feature for implementations of hash indexes.)

Columns that are indexed can contain NULL values.

User-Created and Temporary Tables

MEMORY table contents are stored in memory, which is a property that MEMORY tables share with internal temporary tables that the server creates on the fly while processing queries. However, the two types of tables differ in thatMEMORY tables are not subject to storage conversion, whereas internal temporary tables are:

Loading Data

To populate a MEMORY table when the MySQL server starts, you can use the --init-file option. For example, you can put statements such as INSERT INTO ... SELECT or LOAD DATA INFILE into this file to load the table from a persistent data source. See Section 5.1.3, “Server Command Options”, and Section 13.2.6, “LOAD DATA INFILE Syntax”.

MEMORY Tables and Replication

A server‘s MEMORY tables become empty when it is shut down and restarted. If the server is a replication master, its slaves are not aware that these tables have become empty, so you see out-of-date content if you select data from the tables on the slaves. To synchronize master and slave MEMORY tables, when a MEMORY table is used on a master for the first time since it was started, a DELETE statement is written to the master‘s binary log, to empty the table on the slaves also. The slave still has outdated data in the table during the interval between the master‘s restart and its first use of the table. To avoid this interval when a direct query to the slave could return stale data, use the --init-file option to populate the MEMORY table on the master at startup.

Managing Memory Use

The server needs sufficient memory to maintain all MEMORY tables that are in use at the same time.

Memory is not reclaimed if you delete individual rows from a MEMORY table. Memory is reclaimed only when the entire table is deleted. Memory that was previously used for deleted rows is re-used for new rows within the same table. To free all the memory used by a MEMORY table when you no longer require its contents, execute DELETE orTRUNCATE TABLE to remove all rows, or remove the table altogether using DROP TABLE. To free up the memory used by deleted rows, use ALTER TABLE ENGINE=MEMORY to force a table rebuild.

The memory needed for one row in a MEMORY table is calculated using the following expression:

SUM_OVER_ALL_BTREE_KEYS(max_length_of_key + sizeof(char*) * 4)
+ SUM_OVER_ALL_HASH_KEYS(sizeof(char*) * 2)
+ ALIGN(length_of_row+1, sizeof(char*))

ALIGN() represents a round-up factor to cause the row length to be an exact multiple of the char pointer size.sizeof(char*) is 4 on 32-bit machines and 8 on 64-bit machines.

As mentioned earlier, the max_heap_table_size system variable sets the limit on the maximum size of MEMORYtables. To control the maximum size for individual tables, set the session value of this variable before creating each table. (Do not change the global max_heap_table_size value unless you intend the value to be used forMEMORY tables created by all clients.) The following example creates two MEMORY tables, with a maximum size of 1MB and 2MB, respectively:

mysql> SET max_heap_table_size = 1024*1024;
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t1 (id INT, UNIQUE(id)) ENGINE = MEMORY;
Query OK, 0 rows affected (0.01 sec)

mysql> SET max_heap_table_size = 1024*1024*2;
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t2 (id INT, UNIQUE(id)) ENGINE = MEMORY;
Query OK, 0 rows affected (0.00 sec)

Both tables revert to the server‘s global max_heap_table_size value if the server restarts.

You can also specify a MAX_ROWS table option in CREATE TABLE statements for MEMORY tables to provide a hint about the number of rows you plan to store in them. This does not enable the table to grow beyond themax_heap_table_size value, which still acts as a constraint on maximum table size. For maximum flexibility in being able to use MAX_ROWS, set max_heap_table_size at least as high as the value to which you want eachMEMORY table to be able to grow.

Additional Resources

A forum dedicated to the MEMORY storage engine is available at http://forums.mysql.com/list.php?92.

时间: 2024-11-03 23:35:45

mysql --The MEMORY Storage Engine--官方文档的相关文章

Mysql优化(出自官方文档) - 第八篇(索引优化系列)

目录 Mysql优化(出自官方文档) - 第八篇(索引优化系列) Optimization and Indexes 1 Foreign Key Optimization 2 Column Indexes 3 Column Indexes && Multiple-Column Indexes 4 Comparison of B-Tree and Hash Indexes 5 Use of Index Extensions 6 Invisible Indexes 7 Descending In

Mysql优化(出自官方文档) - 第十二篇(优化锁操作篇)

目录 Mysql优化(出自官方文档) - 第十二篇(优化锁操作篇) 1 Internal Locking Methods 2 Metadata Locking 3 External Locking Mysql优化(出自官方文档) - 第十二篇(优化锁操作篇) 1 Internal Locking Methods 这里介绍Mysql的几种锁,该锁由Mysql自行进行管理,用户不需要处理该锁. Row-Level Locking 对于InnoDB,行锁可以通过SELECT ... FOR UPDAT

Mysql官方文档下载方法

登陆下列网站 http://dev.mysql.com/doc/ 选择相应版本通用手册 点击,可以看到目录,下拉到download this manual,选择下载的格式 下载后效果: 完成,可以阅读了,官方文档是最快的学习方法.

使用命令选项连接到MySQL服务器(参考MySQL官方文档)

使用命令选项连接到MySQL服务器(参考MySQL官方文档)本文介绍如何使用命令行选项为MySQL或mysqldump等客户端指定如何建立到MySQL服务器的连接.客户端程序要连接到MySQL服务器,必须使用正确的连接参数,例如服务器运行的主机名和MySQL帐户的用户名和密码.每个连接参数都有一个默认值,但可以根据需要使用在命令行或选项文件中指定的程序选项覆盖默认值.这里的示例使用mysql客户机程序,但原则适用于其他客户机,如mysqldump, mysqladmin, or mysqlsho

hbase官方文档(转)

Apache HBase™ 参考指南  HBase 官方文档中文版 Copyright © 2012 Apache Software Foundation.保留所有权利. Apache Hadoop, Hadoop, MapReduce, HDFS, Zookeeper, HBase 及 HBase项目 logo 是Apache Software Foundation的商标. Revision History Revision 0.95-SNAPSHOT 2012-12-03T13:38 中文版

HBase 官方文档0.90.4

HBase 官方文档0.90.4 Copyright ? 2010 Apache Software Foundation, 盛大游戏-数据仓库团队-颜开(译) Revision History Revision 0.90.4 配置,数据模型使用入门 Abstract 这是 Apache HBase的官方文档, Hbase是一个分布式,版本化(versioned),构建在 Apache Hadoop和 Apache ZooKeeper上的列数据库. 我(译者)熟悉Hbase的源代码,从事Hbase

Google 官方文档解析之——Application Fundamentals

Android apps are written in the java programming language.The Android SDK tools compile your code-along with any data and resource file-into an APK:an Android package,which is an archive file with an .apk suffix.One APK file contains all the contents

Spark官方文档: Spark Configuration(Spark配置)

Spark官方文档: Spark Configuration(Spark配置) Spark主要提供三种位置配置系统: 环境变量:用来启动Spark workers,可以设置在你的驱动程序或者conf/spark-env.sh 脚本中: java系统性能:可以控制内部的配置参数,两种设置方法: 编程的方式(程序中在创建SparkContext之前,使用System.setProperty("xx","xxx")语句设置相应系统属性值): 在conf/spark-env

【Phabricator】教科书一般的Phabricator安装教程(配合官方文档并带有踩坑解决方案)

随着一声惊雷和滂沱的大雨,我的Phabricator页面终于在我的学生机上跑了起来. 想起在这五个小时内踩过的坑甚如大学隔壁炮王干过的妹子,心里的成就感不禁油然而生. 接下来,我将和大家分享一下本人在CentOS7.4版本,利用lnmp搭建Phabricator的实战过程和踩过的坑.这一方面是为我下一步在docker上部署并制作镜像做好铺垫,更重要的是,我能够有幸和游走在这令人头秃的修罗场里的勇士们,分享我自认为史诗一般难得的宝贵经验.好,那么接下来我们进入正题. 一.什么是phabricato