对Spark的理解

Spark作为一个新的分布式计算引擎正慢慢流行起来,越来越来的企业也准备用它的替换MapReduce,根据自己在工作的一些体会谈谈的优势。

分布式计算归根到底还是一个Map和Reduce操作,Map操作对每个数据块进行计算,Reduce操作对结果进行汇总,现在一些NoSQL分布式数据库其实也是这么一套计算框架,只是map和reduce太基础,太简陋,实现相关的业务时开发比较复杂,不符合生产力发展的需求,这样Spark对map和reduce进行了抽象和封装提出了RDD的概念

RDD的提出是Spark的最大的进步,它让我们不再关注计算本身,以前我们老想着map,reduce啥的,RDD对数据集进行抽象,我们的关注点变成了数据集本身,又借鉴了函数式编程的一些思想,我们可以对数据集做各种各样的操作(spark的transformation和action),Spark框架底层转换了map和reduce的操作,大大的提高了生成力。当然还加入了一些优化,比如map的输出不需要落地,其实要做大数据的计算怎么可能不落地。做大数据的聚集操作时磁盘和网络IO依旧是制约速度的主要原因

Spark提供了更加灵活的DAG编程模型,在spark,每一个RDD用来描述数据集的一个状态,而这个状态是从上一个状态转换过来的,因此RDD之间会形成一个依赖关系,这种RDD的依赖链会触发一个job,而job会被切分成一个stage的DAG图。给了job很大的优化空间,目前DAG减少了数据的读写(缓冲在内存中)和网络的传输(宽依赖和窄依赖),用于迭代和交互计算支持。 传统的mapreduce为了进行迭代计算,需要多个job进行依赖,数据要不停的在HDFS上进行读写,性能大大降低。

还一个优化就是Spark的作业调度。Spark的job是线程级别的,而spark sql中一个sql就是一个job, sql的执行轻量很多。hive的job是进程级别的,一个sql就是一个job,需要启动多个jvm进程。

时间: 2024-10-08 00:54:49

对Spark的理解的相关文章

Spark 快速理解

转自:http://blog.csdn.net/colorant/article/details/8255958 ==是什么 == 目标Scope(解决什么问题) 在大规模的特定数据集上的迭代运算或重复查询检索 官方定义 aMapReduce-like cluster computing framework designed for low-latency iterativejobs and interactive use from an interpreter 个人理解 首先,MapReduc

Spark RDD理解

目录 ----RDD简介 ----RDD操作类别 ----RDD分区 ----宽依赖和窄依赖作用 ----RDD分区划分器 ----RDD到调度 返回顶部 RDD简介 RDD是弹性分布式数据集(Resilient Distributed Dataset),能在并行计算阶段进行高效的数据共享:RDD还提供了一种粗粒度接口,该接口会将相同的操作应用到多个数据集上并记录创建数据集的'血统',从而在不需要存储真正的数据的情况下,达到高效的容错性. 返回顶部 RDD操作类别 RDD操作大致可分为四类:创建

【Spark深入学习 -13】Spark计算引擎剖析

----本节内容------- 1.遗留问题解答 2.Spark核心概念 2.1 RDD及RDD操作 2.2 Transformation和Action 2.3 Spark程序架构 2.4 Spark on Yarn运行流程 2.5 WordCount执行原理 3.Spark计算引擎原理 3.1 Spark内部原理 3.2 生成逻辑执行图 3.3 生成物理执行图 4.Spark Shuffle解析 4.1 Shuffle 简史 4.2  Spark Shuffle ·Shuffle Write

决胜大数据时代:Hadoop&Yarn&Spark企业级最佳实践(8天完整版脱产式培训版本)

Hadoop.Yarn.Spark是企业构建生产环境下大数据中心的关键技术,也是大数据处理的核心技术,是每个云计算大数据工程师必修课. 课程简介 大数据时代的精髓技术在于Hadoop.Yarn.Spark,是大数据时代公司和个人必须掌握和使用的核心内容. Hadoop.Yarn.Spark是Yahoo!.阿里淘宝等公司公认的大数据时代的三大核心技术,是大数据处理的灵魂,是云计算大数据时代的技术命脉之所在,以Hadoop.Yarn.Spark为基石构建起来云计算大数据中心广泛运行于Yahoo!.阿

Spark分区详解!DT大数据梦工厂王家林老师亲自讲解!

http://www.tudou.com/home/_79823675/playlist?qq-pf-to=pcqq.group 一.分片和分区的区别? 分片是从数据角度,分区是从计算的角度,其实都是从大的状态,split成小的. 二.spark分区理解 rdd作为一个分布式的数据集,是分布在多个worker节点上的.如下图所示,RDD1有五个分区(partition),他们分布在了四个worker nodes 上面,RDD2有三个分区,分布在了三个worker nodes上面. 三.默认分区

Spark+ECLIPSE+JAVA+MAVEN windows开发环境搭建及入门实例【附详细代码】

http://blog.csdn.net/xiefu5hh/article/details/51707529 Spark+ECLIPSE+JAVA+MAVEN windows开发环境搭建及入门实例[附详细代码] 标签: SparkECLIPSEJAVAMAVENwindows 2016-06-18 22:35 405人阅读 评论(0) 收藏 举报  分类: spark(5)  版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[+] 前言 本文旨在记录初学Spark时,根据官网快速

如何在万亿级别规模的数据量上使用Spark

一.前言 Spark作为大数据计算引擎,凭借其快速.稳定.简易等特点,快速的占领了大数据计算的领域.本文主要为作者在搭建使用计算平台的过程中,对于Spark的理解,希望能给读者一些学习的思路.文章内容为介绍Spark在DataMagic平台扮演的角色.如何快速掌握Spark以及DataMagic平台是如何使用好Spark的. 二.Spark在DataMagic平台中的角色 图 2-1 整套架构的主要功能为日志接入.查询(实时和离线).计算.离线计算平台主要负责计算这一部分,系统的存储用的是COS

【DataMagic】如何在万亿级别规模的数据量上使用Spark

欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由鹅厂新鲜事儿发表于云+社区专栏 作者:张国鹏 | 腾讯 运营开发工程师 一.前言 Spark作为大数据计算引擎,凭借其快速.稳定.简易等特点,快速的占领了大数据计算的领域.本文主要为作者在搭建使用计算平台的过程中,对于Spark的理解,希望能给读者一些学习的思路.文章内容为介绍Spark在DataMagic平台扮演的角色.如何快速掌握Spark以及DataMagic平台是如何使用好Spark的. 二.Spark在DataMagic

Spark完成wordCount

Spark官方自带了WordCount的样例,我们也可以自己实现,加深对Spark的理解. import org.apache.spark.{SparkConf, SparkContext} object WordCount { def main(args: Array[String]): Unit = { System.setProperty("hadoop.home.dir", "D:/winutils/") // 创建Spark配置,运行环境 val spar