Deep Residual Learning for Image Recognition(MSRA-深度残差学习)

ABSTRACT:

1.Deeper neural networks are more difficult to train.

2.We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously.

3.We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions.

4.We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.

5.On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8 times deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers.

1.在现有基础下,想要进一步训练更深层次的神经网络是非常困难的。

2.我们提出了一种减轻网络训练负担的残差学习框架,这种网络比以前使用过的网络本质上层次更深。

3.我们明确地将这层作为输入层相关的学习残差函数,而不是学习未知的函数。同时,我们提供了全面实验数据,这些数据证明残差网络更容易优化,并且可以从深度增加中大大提高精度。

4.我们在ImageNet数据集用152 层--比VGG网络深8倍的深度来评估残差网络,但它仍具有较低的复杂度。

5.在ImageNet测试集中,这些残差网络整体达到了3.57%的误差。该结果在2015年大规模视觉识别挑战赛分类任务中赢得了第一。此外,我们还用了100到1000层深度分析了的CIFAR-10。

INTRODUCTION:

1.Deep networks naturally integrate low/mid/highlevel features and classifiers in an end-to-end multilayer fashion, and the “levels” of features can be enriched by the number of stacked layers (depth).

2.Problem of vanishing/exploding gradients, which hamper convergence from the beginning. This problem, however, has been largely addressed by normalized initialization and intermediate normalization layers , which enable networks with tens of layers to start converging for stochastic gradient descent (SGD) with backpropagation.

3.with the network depth increasing, accuracy gets saturated (which might be unsurprising) and then degrades rapidly. Unexpectedly, such degradation is not caused by overfitting, and adding more layers to a suitably deep model leads to higher training error, as reported in and thoroughly verified by our experiments.

4.There exists a solution by construction to the deeper model: the added layers are identity mapping, and the other layers are copied from the learned shallower model.

5.In this paper, we address the degradation problem by introducing a deep residual learning framework. Instead of hoping each few stacked layers directly fit a desired underlying mapping, we explicitly let these layers fit a residual mapping.

advantage:

1) Our extremely deep residual nets are easy to optimize, but the counterpart “plain” nets (that simply stack layers) exhibit higher training error when the depth increases;

2) Our deep residual nets can easily enjoy accuracy gains from greatly increased depth, producing results substantially better than previous networks.

时间: 2024-08-28 18:28:12

Deep Residual Learning for Image Recognition(MSRA-深度残差学习)的相关文章

Deep Residual Learning for Image Recognition (ResNet)

目录 主要内容 代码 He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C]. computer vision and pattern recognition, 2016: 770-778. @article{he2016deep, title={Deep Residual Learning for Image Recognition}, author={He, Kaiming and Zhang,

论文学习:Deep residual learning for image recognition

目录 I. Overview II. Degradation III. Solution & Deep residual learning IV. Implementation & Shortcut connections Home page https://github.com/KaimingHe/deep-residual-networks TensorFlow实现: https://github.com/tensorpack/tensorpack/tree/master/exampl

ResNet——Deep Residual Learning for Image Recognition

1. 摘要 更深的神经网络通常更难训练,作者提出了一个残差学习的框架,使得比过去深许多的的网络训连起来也很容易. 在 ImageNet 数据集上,作者设计的网络达到了 152 层,是 VGG-19 的 8 倍,但却有着更低的复杂性.通过集成学习模型最终取得了 3.57% 的错误率,获得了 ILSVRC 2015 比赛的第一名. 表示的深度对于许多视觉识别任务而言至关重要,仅仅由于特别深的表示,作者在 COCO 物体检测数据集上获得了 28% 的相对改进. 2. 介绍 深度神经网络通常集成了低层.

Deep Residual Learning for Image Recognition

Kaiming HeXiangyu ZhangShaoqing RenMicrosoft Research {kahe, v-xiangz, v-shren, jiansun}@microsoft.com Abstract Deeper neural networks are more difficult to train. Wepresent a residual learning framework to ease the trainingof networks that are subst

Paper | Deep Residual Learning for Image Recognition

目录 1. 故事 2. 残差学习网络 2.1 残差块 2.2 ResNet 2.3 细节 3. 实验 3.1 短连接网络与plain网络 3.2 Projection解决短连接维度不匹配问题 3.3 更深的bottleneck结构 ResNet的意义已经不需要我在这里赘述.该文发表在2016 CVPR,至今(2019.10)已有3万+引用.由于ResNet已经成为大多数论文的baseline,因此我们着重看其训练细节.测试细节以及bottleneck等思想. 核心: We explicitly

Deep Residual Learning for Image Recognition(残差网络)

深度在神经网络中有及其重要的作用,但越深的网络越难训练. 随着深度的增加,从训练一开始,梯度消失或梯度爆炸就会阻止收敛,normalized initialization和intermediate normalization能够解决这个问题.但依旧会出现degradation problem:随着深度的增加,准确率会达到饱和,再持续增加深度则会导致准确率下降.这个问题不是由于过拟合造成的,因为训练误差也会随着深度增加而增大. 假定输入是x,期望输出是H(x),如果我们直接把输入x传到输出作为初始

Deep Residual Learning

最近在做一个分类的任务,输入为3通道车型图片,输出要求将这些图片对车型进行分类,最后分类类别总共是30个. 开始是试用了实验室师姐的方法采用了VGGNet的模型对车型进行分类,据之前得实验结果是训练后最高能达到92%的正确率,在采用了ImageNet训练过的DataLayer之后,可以达到97%的正确率,由于我没有进行长时间的运行测试,运行了十几个小时最高达到了92%的样子. 后来是尝试使用Deep Residual Learning的ImageNet(以后简称ResNet)的实现方法,十几个小

深度残差网络(DRN)ResNet网络原理

一说起“深度学习”,自然就联想到它非常显著的特点“深.深.深”(重要的事说三遍),通过很深层次的网络实现准确率非常高的图像识别.语音识别等能力.因此,我们自然很容易就想到:深的网络一般会比浅的网络效果好,如果要进一步地提升模型的准确率,最直接的方法就是把网络设计得越深越好,这样模型的准确率也就会越来越准确. 那现实是这样吗?先看几个经典的图像识别深度学习模型: 这几个模型都是在世界顶级比赛中获奖的著名模型,然而,一看这些模型的网络层次数量,似乎让人很失望,少则5层,多的也就22层而已,这些世界级

CNN卷积神经网络_深度残差网络 ResNet——解决神经网络过深反而引起误差增加的根本问题

from:https://blog.csdn.net/diamonjoy_zone/article/details/70904212 环境:Win8.1 TensorFlow1.0.1 软件:Anaconda3 (集成Python3及开发环境) TensorFlow安装:pip install tensorflow (CPU版) pip install tensorflow-gpu (GPU版) TFLearn安装:pip install tflearn 参考: Deep Residual Le