Spark学习笔记—01 Spark集群的安装

一、概述

关于Spark是什么、为什么学习Spark等等,在这就不说了,直接看这个:http://spark.apache.org,

我就直接说一下Spark的一些优势:

1、快

与Hadoop的MapReduce相比,Spark基于内存的运算要快100倍以上,基于硬盘的运算也要快10倍以上。Spark实现了高效的DAG执行引擎,可以通过基于内存来高效处理数据流。

2、易用

Spark支持Java、Python和Scala的API,还支持超过80种高级算法,使用户可以快速构建不同的应用。而且Spark支持交互式的Python和Scala的shell,可以非常方便地在这些shell中使用Spark集群来验证解决问题的方法。

3、通用

Spark提供了统一的解决方案。Spark可以用于批处理、交互式查询(Spark SQL)、实时流处理(Spark Streaming)、机器学习(Spark MLlib)和图计算(GraphX)。这些不同类型的处理都可以在同一个应用中无缝使用。Spark统一的解决方案非常具有吸引力,毕竟任何公司都想用统一的平台去处理遇到的问题,减少开发和维护的人力成本和部署平台的物力成本。

4、兼容性

Spark可以非常方便地与其他的开源产品进行融合。比如,Spark可以使用Hadoop的YARN和Apache Mesos作为它的资源管理和调度器,并且可以处理所有Hadoop支持的数据,包括HDFS、HBase和Cassandra等。这对于已经部署Hadoop集群的用户特别重要,因为不需要做任何数据迁移就可以使用Spark的强大处理能力。Spark也可以不依赖于第三方的资源管理和调度器,它实现了Standalone作为其内置的资源管理和调度框架,这样进一步降低了Spark的使用门槛,使得所有人都可以非常容易地部署和使用Spark。此外,Spark还提供了在EC2上部署Standalone的Spark集群的工具。
还有总结一句话:Spark是MapReduce的替代方案,而且兼容HDFS、Hive,可融入Hadoop的生态系统,以弥补MapReduce的不足。

二、集群安装

我们在自己的机器上就不要起那么多虚拟机了,就起3台虚拟机就够了(一台Master,两台Worker),当然了你的Linux机器需要先安装JDK和hdfs,我们要安装Spark-1.6.1最好使用JDK7以上。

先简单介绍一下Spark集群的一些概念:

Spark集群包括Master和Worker,Master只有一个,Worker可以有多个,Master和Worker之间通过RPC保持联系;

Master负责管理元数据,Worker负责运行Task,其中细节以后再详细介绍;

还有一个Driver,它就相当于Spark集群的客户端,主要负责向Spark集群提交任务,其中细节以后再详细介绍。

1、下载安装包

就不用写了,我们下载Spark-1.6.1

2、上传安装包并解压

解压安装包到指定位置:(这里我使用的是spark用户,把spark-1.6.1-bin-hadoop2.6.tgz 解压到了我的宿主目录下了)

tar -zxvf spark-1.6.1-bin-hadoop2.6.tgz –C /home/spark

3、配置Spark

进入Spark安装目录下的conf目录,重命名并修改spark-env.sh.template文件:

cd conf/

mv spark-env.sh.template spark-env.sh

在spark-env.sh添加以下配置:

vi spark-env.sh

export JAVA_HOME=[你的JDK_HOME目录]

export SPARK_MASTER_IP=[Spark集群的Master所在节点的地址:Master]

export SPARK_MASTER_PORT=7077[这个端口号是Driver连接Spark集群的端口]

重命名并修改slaves.template文件:

mv slaves.template slaves

在该文件中添加子节点所在的位置(即Worker节点):

vi slaves

[第一个Worker节点的地址:Worker1]

[第二个Worker节点的地址:Worker2]

将配置好的Spark拷贝到其他节点上:

scp -r spark-1.6.1-bin-hadoop2.6/ worker1:/home/spark

scp -r spark-1.6.1-bin-hadoop2.6/ worker2:/home/spark

4、安装完毕 测试启动

到此Spark集群安装完毕,需要启动测试一下,目前是1个Master,2个Work,在Master上启动Spark集群:(注意:不要在Worker上启动start-all,具体细节以后再介绍)

/home/spark/spark-1.5.2-bin-hadoop2.6/sbin/start-all.sh

(start-all.sh 就会启动Master和所有Worker,就不需要去每个Worker上启动了)

启动后在每台机器上执行jps命令,主节点上有Master进程,其他子节点上有Worker进程,登录Spark管理界面查看集群状态(登录地址必须是Master节点,因为Spark WebUI在Master节点上):

http://【Master的地址】:8080/

到此为止Spark集群安装完毕

但是有一个很大的问题,那就是Master节点存在单点故障,要解决此问题,就要借助zookeeper,并且启动至少两个Master节点来实现高可靠,这个也比较简单,等待以后再介绍。当然了Worker也会挂掉,但是Worker的死活是由Master监听的,Master和Worker之间一直会有心跳,一旦Worker挂掉Master感知到以后就会把挂掉的Worker上运行的任务重新分配到其他的Worker上,具体细节待以后再介绍。

时间: 2024-10-22 05:37:39

Spark学习笔记—01 Spark集群的安装的相关文章

spark学习笔记总结-spark入门资料精化

Spark学习笔记 Spark简介 spark 可以很容易和yarn结合,直接调用HDFS.Hbase上面的数据,和hadoop结合.配置很容易. spark发展迅猛,框架比hadoop更加灵活实用.减少了延时处理,提高性能效率实用灵活性.也可以与hadoop切实相互结合. spark核心部分分为RDD.Spark SQL.Spark Streaming.MLlib.GraphX.Spark R等核心组件解决了很多的大数据问题,其完美的框架日受欢迎.其相应的生态环境包括zepplin等可视化方面

Elasticsearch学习笔记-03.1集群健康

本文系本人根据官方文档的翻译,能力有限.水平一般,如果对想学习Elasticsearch的朋友有帮助,将是本人的莫大荣幸. 原文出处:https://www.elastic.co/guide/en/elasticsearch/reference/current/_cluster_health.html 让我们以一个基础的健康检查开始,用这个检查我们可以得知我们的集群工作状态如何.咱们来使用curl做这个检查,不过你也可以使用任何能发起HTTP/REST请求的工具来做这个练习.假设我们仍旧在启动E

Elasticsearch学习笔记-03探索集群

本文系本人根据官方文档的翻译,能力有限.水平一般,如果对想学习Elasticsearch的朋友有帮助,将是本人的莫大荣幸.原文出处:https://www.elastic.co/guide/en/elasticsearch/reference/current/_exploring_your_cluster.html REST API现在咱们已经成功让Elasticsearch的节点(和集群)运行良好了,下一步来了解一下如何与之通信.得之吾幸,Elasticsearch提供了非常广泛切强大的RES

Hadoop学习笔记—13.分布式集群中的动态添加与下架

开篇:在本笔记系列的第一篇中,我们介绍了如何搭建伪分布与分布模式的Hadoop集群.现在,我们来了解一下在一个Hadoop分布式集群中,如何动态(不关机且正在运行的情况下)地添加一个Hadoop节点与下架一个Hadoop节点. 一.实验环境结构 本次试验,我们构建的集群是一个主节点,三个从节点的结构,其中三个从节点的性能配置各不相同,这里我们主要在虚拟机中的内存设置这三个从节点分别为:512MB.512MB与256MB.首先,我们暂时只设置两个从节点,另外一个作为动态添加节点的时候使用.主节点与

Spark学习笔记-使用Spark History Server

在运行Spark应用程序的时候,driver会提供一个webUI给出应用程序的运行信息,但是该webUI随着应用程序的完成而关闭端口,也就是 说,Spark应用程序运行完后,将无法查看应用程序的历史记录.Spark history server就是为了应对这种情况而产生的,通过配置,Spark应用程序在运行完应用程序之后,将应用程序的运行信息写入指定目录,而Spark history server可以将这些运行信息装载并以web的方式供用户浏览. 要使用history server,对于提交应用

Hadoop学习笔记—13.分布式集群中节点的动态添加与下架

开篇:在本笔记系列的第一篇中,我们介绍了如何搭建伪分布与分布模式的Hadoop集群.现在,我们来了解一下在一个Hadoop分布式集群中,如何动态(不关机且正在运行的情况下)地添加一个Hadoop节点与下架一个Hadoop节点. 一.实验环境结构 本次试验,我们构建的集群是一个主节点,三个从节点的结构,其中三个从节点的性能配置各不相同,这里我们主要在虚拟机中的内存设置这三个从节点分别为:512MB.512MB与256MB.首先,我们暂时只设置两个从节点,另外一个作为动态添加节点的时候使用.主节点与

Spark 学习笔记之 Spark history Server 搭建

在hdfs上建立文件夹/directory hadoop fs -mkdir /directory 进入conf目录  spark-env.sh 增加以下配置 export SPARK_HISTORY_OPTS="-Dspark.history.ui.port=7777 -Dspark.history.retainedApplications=3 -Dspark.history.fs.logDirectory=hdfs://bjsxt/directory" spark-defaults

Spark学习笔记5:Spark集群架构

Spark的一大好处就是可以通过增加机器数量并使用集群模式运行,来扩展计算能力.Spark可以在各种各样的集群管理器(Hadoop YARN , Apache Mesos , 还有Spark自带的独立集群管理器)上运行,所以Spark应用既能够适应专用集群,又能用于共享的云计算环境. Spark运行时架构 Spark在分布式环境中的架构如下图: 在分布式环境下,Spark集群采用的是主/从结构.在Spark集群,驱动器节点负责中央协调,调度各个分布式工作节点.执行器节点是工作节点,作为独立的Ja

spark学习笔记-CentOS 6.4集群搭建(2)

CentOS 6.5安装 1.使用课程提供的CentOS 6.5镜像即可,CentOS-6.5-i386-minimal.iso. 2.创建虚拟机:打开Virtual Box,点击"新建"按钮,点击"下一步",输入虚拟机名称为spark1,选择操作系统为Linux,选择版本为Red Hat,分配1024MB内存,后面的选项全部用默认,在Virtual Disk File location and size中,一定要自己选择一个目录来存放虚拟机文件,最后点击"