核、值域、向量空间、行空间、零空间

1、核

所有经过变换矩阵后变成了零向量的向量组成的集合,通常用Ker(A)来表示。

假设你是一个向量,有一个矩阵要来变换你,如果你不幸落入了这个矩阵的核里面,那么很遗憾转换后你就变成了虚无的零。特别指出的是,核实“变换”(Transform)中的概念,矩阵变换中有一个相似的概念叫“零空间”。有的材料在谈到变换的时候使用T来表示,联系到矩阵时才用A,本文把矩阵直接看作“变换”。核所在的空间定义为V空间,也就是全部向量原来的空间。

2、值域

某个空间中所有向量经过变换矩阵后形成的向量的集合,通常用R(A)来表示。

假设你是一个向量,有一个矩阵要来变换你,这个矩阵的值域表示了你将来所有可能的位置。值域的维度也叫做秩(Rank)。值域所在的空间定义为W空间。

3、空间

向量与建立在其上的加、乘运算构成了空间。向量可以(也只能在)空间中变换。使用坐标系(基)在空间中描述向量。

不管是核还是值域,它们都是封闭的。意思是说,如果你和你的朋友困在核里面,你们不管是相加还是相乘都还会在核里面,跑不出去,这就构成了一个子空间。值域同理。

数学家证明了,V(核所在的空间定义为V空间)的维度一定等于它的任意一个变换矩阵的核的维度加上值域的维度。

严格的证明可以参考相关资料,这里说一个直观的证明方法:

V的维度也就是V的基的数目。这些基分为两部分,一部分在核中,一部分是值域中非零象的原象(肯定可以分,因为核和值域都是独立的子空间)。如果把V中的任意向量用基的形式写出来,那么这个向量必然也是一部分在核中,另一部分在值域中非零象的原象里。现在对这个向量作变换,核的那部分当然为零了,另一部分的维度刚好等于值域的维度。

四、变换矩阵行空间和零空间的关系

根据矩阵的性质,变换矩阵的行数等于V的维度,变换矩阵的秩等于值域R的维度,所以可以得出:

因为A的秩又是A行空间的维度(注意在非满矩阵中这个数肯定小于行数),所以上述公式可以变为:

之所以写成这个形式,是因为我们可以发现A的零空间和A的行空间是正交互补的。正交是因为零空间就是核,按定义乘以A的行向量当然为零。互补是因为它们加起来刚好张成整个V空间。

这个正交互补导致了非常好的性质,因为A的零空间和A的行空间的基组合起来刚好可以凑成V的基。

五、变换矩阵列空间和左零空间的关系

如果把以上方程取转置,则可以得到:

因为的实际意义是把值域和定义域颠倒过来了,所以的零空间就是值域以外的区域投向V中零点的所有向量的空间,有人将其称为“左零空间”(Left Null Space)。这样就可以得到:

同样,A的左零空间与A的列空间也正交互补,它们加起来刚好可以张成W空间,它们的基也构成了W的基。

六、变换矩阵行空间和列空间的关系

变换矩阵实际上就是把目标向量从行空间转换到列空间。

矩阵的行空间、列空间、零空间、左零空间构成了我们在线性代数研究中的所有空间,把它们的关系弄清楚,对于分别的基转换非常重要。

七、特征方程的秘密

我们试图构造一个这样的变换矩阵A:它把向量变换到一个值域空间,这个值域空间的基是正交的;不仅如此,还要求任对于意一个基v都有  的形式, 是原来空间的一个已知基。这样我们就能把复杂的向量问题转换到一个异常简单的空间中去。

如果 的数量不等于v,那么用取代A,可以变为一个对称且半正定矩阵,它的特征向量正是要求的基v!

再次说明,矩阵不等于变换,把矩阵看成变换只是提供一个理解变换矩阵的方法。或者,我们可以认为,矩阵只是变换的一种变现形式。

转自:特征值和特征向量的几何和物理意义

时间: 2024-12-12 16:24:33

核、值域、向量空间、行空间、零空间的相关文章

数学-线性代数导论-#11 基于矩阵A生成的空间:列空间、行空间、零空间、左零空间

线性代数导论-#11 基于矩阵A生成的空间:列空间.行空间.零空间.左零空间 本节课介绍和进一步总结了如何求出基于一个m*n矩阵A生成的四种常见空间的维数和基: 列空间C(A),dim C(A) = r,基 = { U中主元列对应的原列向量 }: 行空间C(AT), dim C(AT) = r,基 = { U中的主元行 }: 1.为什么行空间不表示为R(A)而表示为C(AT)? 因为转置是矩阵的行与列之间的桥梁. 既然我们已经研究过列空间,通过转置,我们可以将行空间视为转置矩阵的列空间. 2.行

【线性代数】向量空间

对称矩阵 假设有一矩阵A,其中Aij=Aji,则称这个矩阵为对称矩阵. 对称矩阵有如下性质: 也就是说:1.一个对称矩阵的转置和其逆是相等的:2.一个对称矩阵可以由一个矩阵和其转置矩阵相乘得到. 向量空间 向量空间即空间中向量的四则运算得到的向量人在空间中. 1.二维情况下,其子空间有 a.零向量(0,0) b.过零点的直线 c.R2整个空间 2.三维情况下,其子空间有 a.零向量(0,0,0) b.过(0,0,0)的平面 c.过(0,0,0)的直线 d.R3整个空间 列空间 假设有一个矩阵A:

SVM核技巧的经典解释

支持向量机: Kernel by pluskid, on 2010-09-11, in Machine Learning     68 comments 本文是"支持向量机系列"的第三篇,參见本系列的其它文章. 前面我们介绍了线性情况下的支持向量机,它通过寻找一个线性的超平面来达到对数据进行分类的目的.只是,由于是线性方法,所以对非线性的数据就没有办法处理了. 比如图中的两类数据,分别分布为两个圆圈的形状,不论是不论什么高级的分类器.仅仅要它是线性的,就没法处理.SVM 也不行. 由于

【线性代数】矩阵的零空间

矩阵A的零空间就Ax=0的解的集合. 零空间的求法:对矩阵A进行消元求得主变量和自由变量:给自由变量赋值得到特解:对特解进行线性组合得到零空间. 假设矩阵如下: 对矩阵A进行高斯消元得到上三角矩阵U,继续化简得到最简矩阵R: 由于方程Ax=0的右侧是零向量,所以只对矩阵A进行消元不会影响解,因此不需要增广矩阵,所以有: 从上面的高斯消元的结果可以看出,矩阵A的秩为2,其中第1,3列为主元列,2,4列为自由列,对应于方程主来说,形式转变如下: 从上式可以看出,x2,x4是自由变量,我们可以随意赋值

线代笔记 #07# 逆矩阵,列空间,零空间

源: 线性代数的本质 To ask the right question is harder than to answer it.   -Georg Cantor 印象中,我在视频里曾看到过这样的两句话(没有经过核实),其中一句是“向量是线性变换的载体”,另外一句是“当线性变换作用于空间······”. 之后我一直有一种误解:向量是一种“物质”,而运动变化(线性变换)必然是作用于物质之上的,不应该有脱离向量的线性变换.这种观点给我理解概念带来了一些困扰. 例如说,我反复看了好几遍才明白“列空间(

数学-线性代数导论-#10 线性相关性、向量空间的基和维数

线性代数导论-#10 线性相关性.向量空间的基和维数 这节课中,我们先讲了前面的课程中一直提及的线性相关性的具体定义,并以此为基础建立了向量空间的"基"和"维数"的定义,最后归纳为一种已知若干向量求其生成的空间的基和维数的系统方法. 首先是线性相关性的定义. 已知一个由n个向量构成的向量组[V1,V2,-,Vn],如果存在n个系数[C1,C2,-,Cn],使得各CiVi(i=1,2,3,-,n)的和为0,则称这组向量线性相关.反之,如不存在,则称其线性无关. 当然,

麻省理工公开课:线性代数 第6课 列空间和零空间

参考资料: 网易公开课:http://open.163.com/special/opencourse/daishu.html 麻省理工公开课:线性代数 一.向量空间和子空间(加法封闭.数乘封闭) 向量空间$R^3$的子空间:$R^3$.任意经过原点$(0, 0, 0)$的平面$P$和直线$L$.只包含零向量的空间$Z$ 并集:$P\bigcup L$是子空间吗? //否!对加法运算不封闭 交集:$P\bigcap L$是子空间吗? //是! 结论:任意子空间的交集仍然是子空间 二.矩阵列空间 $

向量空间

向量空间\(V\)定义:对于任意\(x,y \in V\),\(\alpha, \beta\in R\)or\(C\),满足\(\alpha x +\beta y \in V\). 子空间\(L\)的定义:线性空间的子集\(L\subset V\),对于任意\(x,y\in L\),\(\alpha, \beta \in R\),满足\(\alpha x + \beta y \in L\). 令\(\alpha = -\beta, x = y\)可得,\(0\in L\). \(\{0\}\)称

【线性代数的本质】行列式、逆矩阵、列空间、秩、零空间

线性代数的本质,源视频 https://www.bilibili.com/video/BV1ys411472E 目录 行列式 逆矩阵 秩 列空间与零空间 非方阵 行列式 我们已经知道了矩阵的线性变换的意义,我们这节来学习行列式. 我们现在想象一些线性变换,有一些将空间向外拉伸,有些将空间向内挤压. 我们需要测量一个区域被拉伸或者被挤压的程度将会很有用,更具体一点,也就是测量一个给定的区域面积增大或者减小的比例. 比如下面这样的线性变换矩阵,将原来面积为 1 的区域变成了长度为 3 宽度为 2 的