UDT Server在执行UDT::listen()之后,就可以接受其它节点的连接请求了。这里我们研究一下UDT连接建立的过程。
连接的发起
来看连接的发起方。如前面我们看到的那样,UDT Client创建一个Socket,可以将该Socket绑定到某个端口,也可以不绑定,然后就可以调用UDT::connect()将这个Socket连接到UDT Server了。来看UDT::connect()的定义(src/api.cpp):
int CUDTUnited::connect(const UDTSOCKET u, const sockaddr* name, int namelen) { CUDTSocket* s = locate(u); if (NULL == s) throw CUDTException(5, 4, 0); CGuard cg(s->m_ControlLock); // check the size of SOCKADDR structure if (AF_INET == s->m_iIPversion) { if (namelen != sizeof(sockaddr_in)) throw CUDTException(5, 3, 0); } else { if (namelen != sizeof(sockaddr_in6)) throw CUDTException(5, 3, 0); } // a socket can "connect" only if it is in INIT or OPENED status if (INIT == s->m_Status) { if (!s->m_pUDT->m_bRendezvous) { s->m_pUDT->open(); updateMux(s); s->m_Status = OPENED; } else throw CUDTException(5, 8, 0); } else if (OPENED != s->m_Status) throw CUDTException(5, 2, 0); // connect_complete() may be called before connect() returns. // So we need to update the status before connect() is called, // otherwise the status may be overwritten with wrong value (CONNECTED vs. CONNECTING). s->m_Status = CONNECTING; try { s->m_pUDT->connect(name); } catch (CUDTException &e) { s->m_Status = OPENED; throw e; } // record peer address delete s->m_pPeerAddr; if (AF_INET == s->m_iIPversion) { s->m_pPeerAddr = (sockaddr*) (new sockaddr_in); memcpy(s->m_pPeerAddr, name, sizeof(sockaddr_in)); } else { s->m_pPeerAddr = (sockaddr*) (new sockaddr_in6); memcpy(s->m_pPeerAddr, name, sizeof(sockaddr_in6)); } return 0; } int CUDT::connect(UDTSOCKET u, const sockaddr* name, int namelen) { try { return s_UDTUnited.connect(u, name, namelen); } catch (CUDTException &e) { s_UDTUnited.setError(new CUDTException(e)); return ERROR; } catch (bad_alloc&) { s_UDTUnited.setError(new CUDTException(3, 2, 0)); return ERROR; } catch (...) { s_UDTUnited.setError(new CUDTException(-1, 0, 0)); return ERROR; } } int connect(UDTSOCKET u, const struct sockaddr* name, int namelen) { return CUDT::connect(u, name, namelen); }
UDT::connect() API实现的结构跟其它的API没有太大的区别,不再赘述,直接来分析CUDTUnited::connect():
1. 调用CUDTUnited::locate(),查找UDT Socket对应的CUDTSocket结构。若找不到,则抛出异常直接返回;否则,继续执行。
2. 根据UDT Socket的IP版本,检查目标地址的有效性。若无效,则退出,否则继续执行。
3. 检查UDT Socket的状态。确保只有处于INIT或OPENED状态的UDT Socket才可以执行connect()操作。新创建的UDT Socket处于INIT状态,bind之后UDT Socket处于OPENED状态。如果UDT Socket处于INIT状态,且不是Rendezvous模式,还会执行s->m_pUDT->open(),将UDT Socket与多路复用器CMultiplexer,然后将状态置为OPENED。
前面我们在bind的执行过程中有看到将UDT Socket与多路复用器CMultiplexer关联的过程CUDTUnited::updateMux()。但这里执行的updateMux()的不同之处在于,它既没有传递有效的系统UDP socket,也没有传递有效的本地端口地址。回想updateMux()的实现,这两个参数主要决定了CMultiplexer的CChannel将与哪个端口关联。来看两个CChannel::open()的实现(src/channel.cpp):
void CChannel::open(const sockaddr* addr) { // construct an socket m_iSocket = ::socket(m_iIPversion, SOCK_DGRAM, 0); #ifdef WIN32 if (INVALID_SOCKET == m_iSocket) #else if (m_iSocket < 0) #endif throw CUDTException(1, 0, NET_ERROR); if (NULL != addr) { socklen_t namelen = m_iSockAddrSize; if (0 != ::bind(m_iSocket, addr, namelen)) throw CUDTException(1, 3, NET_ERROR); } else { //sendto or WSASendTo will also automatically bind the socket addrinfo hints; addrinfo* res; memset(&hints, 0, sizeof(struct addrinfo)); hints.ai_flags = AI_PASSIVE; hints.ai_family = m_iIPversion; hints.ai_socktype = SOCK_DGRAM; if (0 != ::getaddrinfo(NULL, "0", &hints, &res)) throw CUDTException(1, 3, NET_ERROR); if (0 != ::bind(m_iSocket, res->ai_addr, res->ai_addrlen)) throw CUDTException(1, 3, NET_ERROR); ::freeaddrinfo(res); } setUDPSockOpt(); } void CChannel::open(UDPSOCKET udpsock) { m_iSocket = udpsock; setUDPSockOpt(); } void CChannel::setUDPSockOpt() { #if defined(BSD) || defined(OSX) // BSD system will fail setsockopt if the requested buffer size exceeds system maximum value int maxsize = 64000; if (0 != ::setsockopt(m_iSocket, SOL_SOCKET, SO_RCVBUF, (char*)&m_iRcvBufSize, sizeof(int))) ::setsockopt(m_iSocket, SOL_SOCKET, SO_RCVBUF, (char*)&maxsize, sizeof(int)); if (0 != ::setsockopt(m_iSocket, SOL_SOCKET, SO_SNDBUF, (char*)&m_iSndBufSize, sizeof(int))) ::setsockopt(m_iSocket, SOL_SOCKET, SO_SNDBUF, (char*)&maxsize, sizeof(int)); #else // for other systems, if requested is greated than maximum, the maximum value will be automactally used if ((0 != ::setsockopt(m_iSocket, SOL_SOCKET, SO_RCVBUF, (char*) &m_iRcvBufSize, sizeof(int))) || (0 != ::setsockopt(m_iSocket, SOL_SOCKET, SO_SNDBUF, (char*) &m_iSndBufSize, sizeof(int)))) throw CUDTException(1, 3, NET_ERROR); #endif timeval tv; tv.tv_sec = 0; #if defined (BSD) || defined (OSX) // Known BSD bug as the day I wrote this code. // A small time out value will cause the socket to block forever. tv.tv_usec = 10000; #else tv.tv_usec = 100; #endif #ifdef UNIX // Set non-blocking I/O // UNIX does not support SO_RCVTIMEO int opts = ::fcntl(m_iSocket, F_GETFL); if (-1 == ::fcntl(m_iSocket, F_SETFL, opts | O_NONBLOCK)) throw CUDTException(1, 3, NET_ERROR); #elif WIN32 DWORD ot = 1; //milliseconds if (0 != ::setsockopt(m_iSocket, SOL_SOCKET, SO_RCVTIMEO, (char *)&ot, sizeof(DWORD))) throw CUDTException(1, 3, NET_ERROR); #else // Set receiving time-out value if (0 != ::setsockopt(m_iSocket, SOL_SOCKET, SO_RCVTIMEO, (char *) &tv, sizeof(timeval))) throw CUDTException(1, 3, NET_ERROR); #endif }
可以看到CChannel::open()主要是把UDT的CChannel与一个系统的UDP socket关联起来,它们总共处理了3中情况,一是调用者已经创建并绑定到了目标端口的系统UDP socket,这种最简单,直接将传递进来的UDPSOCKET赋值给CChannel的m_iSocket,然后设置系统UDP socket的选项;二是传递进来了一个有效的本地端口地址,此时CChannel会自己先创建一个系统UDP socket,并将该socket绑定到传进来的目标端口地址,一、二两种情况正是UDT的两个bind API的情况;三是既没有有效的系统UDP socket,又没有有效的本地端口地址传进来,则会在创建了系统UDP socket之后,先再找一个可用的端口地址,然后将该socket绑定到找到的端口地址,这也就是UDT Socket没有bind,直接connect的情况。
4. 将UDT Socket的状态置为CONNECTING。
5. 执行s->m_pUDT->connect(name),连接UDT Server。如果连接失败,有异常抛出,UDT Socket的状态会退回到OPENED状态,然后返回。在这个函数中会完成建立连接整个的网络消息交互过程。
6. 将连接的目标地址复制到UDT Socket的Peer Address。然后返回0表示成功结束。
在仔细地分析连接建立过程中的数据包交互之前,可以先粗略地看一下这个过程收发了几个包,及各个包收发的顺序。我们知道在UDT中,所有数据包的收发都是通过CChannel完成的,我们可以在CChannel::sendto()和CChannel::recvfrom()中加log来track这一过程。通过UDT提供的demo程序appserver和appclient(在app/目录下)来研究。先在一个终端下执行appserver:
[email protected]:/media/data/downloads/hudt/app$ ./appserver server is ready at port: 9000
改造appclient,使得它只发送一个比较小的数据包就结束,编译后在另一个终端下执行,可以看到有如下的logs吐出来:
[email protected]:/media/data/downloads/hudt/app$ ./appclient 127.0.0.1 9000 To connect CRcvQueue::registerConnector Send packet 0 Receive packet 364855723 unit->m_Packet.m_iID 364855723 Send packet 0 Receive packet 364855723 unit->m_Packet.m_iID 364855723 To send data. send 10 bytes Send packet 1020108693 Receive packet 364855723 unit->m_Packet.m_iID 364855723 Send packet 1020108693 Receive packet 364855723 unit->m_Packet.m_iID 364855723 Send packet 1020108693 Receive packet 364855723 unit->m_Packet.m_iID 364855723 Send packet 1020108693
在appclient运行的这段时间,在运行appserver的终端下的可以看到有如下的logs输出:
[email protected]:/media/data/downloads/hudt/app$ ./appserver server is ready at port: 9000 Receive packet 0 unit->m_Packet.m_iID 0 Send packet 364855723 Receive packet 0 unit->m_Packet.m_iID 0 new CUDTSocket SocketID is 1020108693 PeerID 364855723 Send packet 364855723 new connection: 127.0.0.1:59847 Receive packet 1020108693 unit->m_Packet.m_iID 1020108693 Send packet 364855723 Send packet 364855723 Send packet 364855723 Receive packet 1020108693 unit->m_Packet.m_iID 1020108693 Receive packet 1020108693 unit->m_Packet.m_iID 1020108693 Receive packet 1020108693 unit->m_Packet.m_iID 1020108693 recv:Connection was broken.
可以看到,UDT Client端先发送了一个消息MSG1给UDT Server;UDT Server端收到消息MSG1之后,回了一个消息MSG2给UDT Client;UDT Client收到消息MSG2,又回了一个消息MSG3给UDT Server;UDT Server收到消息MSG3后又回了一个消息MSG4给UDT Client,然后从UDT::accept()返回,自此UDT Server认为一个连接已经成功建立;UDT Client则在收到消息MSG4后,从UDT::connect()返回,并自此认为连接已成功建立,可以进行数据的收发了。用一幅图来描述这个过程:
至于MSG1、2、3、4的具体格式及内容,则留待我们后面来具体分析了。
接着来看连接建立过程消息交互具体的实现,也就是CUDT::connect()函数:
void CUDT::connect(const sockaddr* serv_addr) { CGuard cg(m_ConnectionLock); if (!m_bOpened) throw CUDTException(5, 0, 0); if (m_bListening) throw CUDTException(5, 2, 0); if (m_bConnecting || m_bConnected) throw CUDTException(5, 2, 0); // record peer/server address delete m_pPeerAddr; m_pPeerAddr = (AF_INET == m_iIPversion) ? (sockaddr*) new sockaddr_in : (sockaddr*) new sockaddr_in6; memcpy(m_pPeerAddr, serv_addr, (AF_INET == m_iIPversion) ? sizeof(sockaddr_in) : sizeof(sockaddr_in6)); // register this socket in the rendezvous queue // RendezevousQueue is used to temporarily store incoming handshake, non-rendezvous connections also require this function uint64_t ttl = 3000000; if (m_bRendezvous) ttl *= 10; ttl += CTimer::getTime(); m_pRcvQueue->registerConnector(m_SocketID, this, m_iIPversion, serv_addr, ttl); // This is my current configurations m_ConnReq.m_iVersion = m_iVersion; m_ConnReq.m_iType = m_iSockType; m_ConnReq.m_iMSS = m_iMSS; m_ConnReq.m_iFlightFlagSize = (m_iRcvBufSize < m_iFlightFlagSize) ? m_iRcvBufSize : m_iFlightFlagSize; m_ConnReq.m_iReqType = (!m_bRendezvous) ? 1 : 0; m_ConnReq.m_iID = m_SocketID; CIPAddress::ntop(serv_addr, m_ConnReq.m_piPeerIP, m_iIPversion); // Random Initial Sequence Number srand((unsigned int) CTimer::getTime()); m_iISN = m_ConnReq.m_iISN = (int32_t) (CSeqNo::m_iMaxSeqNo * (double(rand()) / RAND_MAX)); m_iLastDecSeq = m_iISN - 1; m_iSndLastAck = m_iISN; m_iSndLastDataAck = m_iISN; m_iSndCurrSeqNo = m_iISN - 1; m_iSndLastAck2 = m_iISN; m_ullSndLastAck2Time = CTimer::getTime(); // Inform the server my configurations. CPacket request; char* reqdata = new char[m_iPayloadSize]; request.pack(0, NULL, reqdata, m_iPayloadSize); // ID = 0, connection request request.m_iID = 0; int hs_size = m_iPayloadSize; m_ConnReq.serialize(reqdata, hs_size); request.setLength(hs_size); m_pSndQueue->sendto(serv_addr, request); m_llLastReqTime = CTimer::getTime(); m_bConnecting = true; // asynchronous connect, return immediately if (!m_bSynRecving) { delete[] reqdata; return; } // Wait for the negotiated configurations from the peer side. CPacket response; char* resdata = new char[m_iPayloadSize]; response.pack(0, NULL, resdata, m_iPayloadSize); CUDTException e(0, 0); while (!m_bClosing) { // avoid sending too many requests, at most 1 request per 250ms if (CTimer::getTime() - m_llLastReqTime > 250000) { m_ConnReq.serialize(reqdata, hs_size); request.setLength(hs_size); if (m_bRendezvous) request.m_iID = m_ConnRes.m_iID; m_pSndQueue->sendto(serv_addr, request); m_llLastReqTime = CTimer::getTime(); } response.setLength(m_iPayloadSize); if (m_pRcvQueue->recvfrom(m_SocketID, response) > 0) { if (connect(response) <= 0) break; // new request/response should be sent out immediately on receving a response m_llLastReqTime = 0; } if (CTimer::getTime() > ttl) { // timeout e = CUDTException(1, 1, 0); break; } } delete[] reqdata; delete[] resdata; if (e.getErrorCode() == 0) { if (m_bClosing) // if the socket is closed before connection... e = CUDTException(1); else if (1002 == m_ConnRes.m_iReqType) // connection request rejected e = CUDTException(1, 2, 0); else if ((!m_bRendezvous) && (m_iISN != m_ConnRes.m_iISN)) // secuity check e = CUDTException(1, 4, 0); } if (e.getErrorCode() != 0) throw e; }
可以看到,在这个函数中主要完成了如下的这样一些事情:
1. 检查CUDT的状态。确保只有已经与多路复用器关联,即处于OPENED状态的UDT Socket才能执行CUDT::connect()操作。如前面看到的,bind操作可以使UDT Socket进入OPENED状态。对于没有进行过bind的UDT Socket,CUDTUnited::connect()会做这样的保证。
2. 拷贝目标网络地址为UDT Socket的PeerAddr。
3. 执行m_pRcvQueue->registerConnector()向接收队列注册Connector。来看这个函数的执行过程(src/queue.cpp):
void CRendezvousQueue::insert(const UDTSOCKET& id, CUDT* u, int ipv, const sockaddr* addr, uint64_t ttl) { CGuard vg(m_RIDVectorLock); CRL r; r.m_iID = id; r.m_pUDT = u; r.m_iIPversion = ipv; r.m_pPeerAddr = (AF_INET == ipv) ? (sockaddr*) new sockaddr_in : (sockaddr*) new sockaddr_in6; memcpy(r.m_pPeerAddr, addr, (AF_INET == ipv) ? sizeof(sockaddr_in) : sizeof(sockaddr_in6)); r.m_ullTTL = ttl; m_lRendezvousID.push_back(r); } void CRcvQueue::registerConnector(const UDTSOCKET& id, CUDT* u, int ipv, const sockaddr* addr, uint64_t ttl) { m_pRendezvousQueue->insert(id, u, ipv, addr, ttl); }
可以看到,在这个函数中,主要是向接收队列CRcvQueue的CRendezvousQueue m_pRendezvousQueue中插入了一个CRL结构。那CRendezvousQueue又是个什么东西呢?来看它的定义(src/queue.h):
class CRendezvousQueue { public: CRendezvousQueue(); ~CRendezvousQueue(); public: void insert(const UDTSOCKET& id, CUDT* u, int ipv, const sockaddr* addr, uint64_t ttl); void remove(const UDTSOCKET& id); CUDT* retrieve(const sockaddr* addr, UDTSOCKET& id); void updateConnStatus(); private: struct CRL { UDTSOCKET m_iID; // UDT socket ID (self) CUDT* m_pUDT; // UDT instance int m_iIPversion; // IP version sockaddr* m_pPeerAddr; // UDT sonnection peer address uint64_t m_ullTTL; // the time that this request expires }; std::list<CRL> m_lRendezvousID; // The sockets currently in rendezvous mode pthread_mutex_t m_RIDVectorLock; };
可以看到,它就是一个简单的容器,提供的操作也是常规的插入、移除及检索等操作:
void CRendezvousQueue::remove(const UDTSOCKET& id) { CGuard vg(m_RIDVectorLock); for (list<CRL>::iterator i = m_lRendezvousID.begin(); i != m_lRendezvousID.end(); ++i) { if (i->m_iID == id) { if (AF_INET == i->m_iIPversion) delete (sockaddr_in*) i->m_pPeerAddr; else delete (sockaddr_in6*) i->m_pPeerAddr; m_lRendezvousID.erase(i); return; } } } CUDT* CRendezvousQueue::retrieve(const sockaddr* addr, UDTSOCKET& id) { CGuard vg(m_RIDVectorLock); // TODO: optimize search for (list<CRL>::iterator i = m_lRendezvousID.begin(); i != m_lRendezvousID.end(); ++i) { if (CIPAddress::ipcmp(addr, i->m_pPeerAddr, i->m_iIPversion) && ((0 == id) || (id == i->m_iID))) { id = i->m_iID; return i->m_pUDT; } } return NULL; }
那接收队列CRcvQueue是用这个队列来做什么的呢?这主要与接收队列CRcvQueue的消息dispatch机制有关。在接收队列CRcvQueue的worker线程中,接收到一条消息之后,它会根据消息的目标SocketID,及发送端的地址等信息,将消息以不同的方式进行dispatch,m_pRendezvousQueue中的CUDT是其中的一类dispatch目标。后面我们在研究消息接收时,会再来仔细研究接收队列CRcvQueue的worker线程及m_pRendezvousQueue。
4. 构造 连接请求 消息CHandShake m_ConnReq。可以看一下CHandShake的定义(src/packet.h):
class CHandShake { public: CHandShake(); int serialize(char* buf, int& size); int deserialize(const char* buf, int size); public: static const int m_iContentSize; // Size of hand shake data public: int32_t m_iVersion; // UDT version int32_t m_iType; // UDT socket type int32_t m_iISN; // random initial sequence number int32_t m_iMSS; // maximum segment size int32_t m_iFlightFlagSize; // flow control window size int32_t m_iReqType; // connection request type: 1: regular connection request, 0: rendezvous connection request, -1/-2: response int32_t m_iID; // socket ID int32_t m_iCookie; // cookie uint32_t m_piPeerIP[4]; // The IP address that the peer‘s UDP port is bound to };
CHandShake的m_iID为发起端UDT Socket的SocketID,请求类型m_iReqType将被设置为了1,还设置了m_iMSS用于协商MSS值。CHandShake的构造函数会初始化所有的字段(src/packet.cpp):
CHandShake::CHandShake() : m_iVersion(0), m_iType(0), m_iISN(0), m_iMSS(0), m_iFlightFlagSize(0), m_iReqType(0), m_iID(0), m_iCookie_iCookie(0) { for (int i = 0; i < 4; ++i) m_piPeerIP[i] = 0; }
可以看到m_iCookie被初始化为了0。但注意在这里,CHandShake m_ConnReq的构造过程中,m_iCookie并没有被赋予新值。
5. 随机初始化序列号Sequence Number。
6. 创建一个CPacket结构request,为它创建大小为m_iPayloadSize的缓冲区,将该缓冲区pack进CPacket结构,并专门把request.m_iID,也就是这个包发送的目的UDT SocketID,设置为0。
m_iPayloadSize的值根据UDT Socket创建者的不同,在不同的地方设置。由应用程序创建的UDT Socket在CUDT::open()中设置,比如Listening的UDT Socket在bind时会执行CUDT::open(),或者连接UDT Server但没有执行过bind操作的UDT Socket会在CUDTUnited::connect()中执行CUDT::open();UDT Server中由Listening的UDT Socket收到连接请求时创建的UDT Socket,在CUDT::connect(const sockaddr* peer, CHandShake* hs)中初设置;发起连接的UDT Socket还会在CUDT::connect(const CPacket& response)中再次更新这个值。但这个值总是被设置为m_iPktSize - CPacket::m_iPktHdrSize,CPacket::m_iPktHdrSize为固定的UDT Packet Header大小16。
m_iPktSize总是与m_iPayloadSize在相同的地方设置,被设置为m_iMSS - 28。m_iMSS,MSS(Maximum Segment Size,最大报文长度),这里是UDT协议定义的一个选项,用于在UDT连接建立时,收发双方协商通信时每一个报文段所能承载的最大数据长度。在CUDT对象创建时被初始化为1500,但可以通过UDT::setsockopt()进行设置。
这里先来看一下CPacket的结构(src/packet.h):
class CPacket { friend class CChannel; friend class CSndQueue; friend class CRcvQueue; public: int32_t& m_iSeqNo; // alias: sequence number int32_t& m_iMsgNo; // alias: message number int32_t& m_iTimeStamp; // alias: timestamp int32_t& m_iID; // alias: socket ID char*& m_pcData; // alias: data/control information static const int m_iPktHdrSize; // packet header size public: CPacket(); ~CPacket(); // Functionality: // Get the payload or the control information field length. // Parameters: // None. // Returned value: // the payload or the control information field length. int getLength() const; // Functionality: // Set the payload or the control information field length. // Parameters: // 0) [in] len: the payload or the control information field length. // Returned value: // None. void setLength(int len); // Functionality: // Pack a Control packet. // Parameters: // 0) [in] pkttype: packet type filed. // 1) [in] lparam: pointer to the first data structure, explained by the packet type. // 2) [in] rparam: pointer to the second data structure, explained by the packet type. // 3) [in] size: size of rparam, in number of bytes; // Returned value: // None. void pack(int pkttype, void* lparam = NULL, void* rparam = NULL, int size = 0); // Functionality: // Read the packet vector. // Parameters: // None. // Returned value: // Pointer to the packet vector. iovec* getPacketVector(); // Functionality: // Read the packet flag. // Parameters: // None. // Returned value: // packet flag (0 or 1). int getFlag() const; // Functionality: // Read the packet type. // Parameters: // None. // Returned value: // packet type filed (000 ~ 111). int getType() const; // Functionality: // Read the extended packet type. // Parameters: // None. // Returned value: // extended packet type filed (0x000 ~ 0xFFF). int getExtendedType() const; // Functionality: // Read the ACK-2 seq. no. // Parameters: // None. // Returned value: // packet header field (bit 16~31). int32_t getAckSeqNo() const; // Functionality: // Read the message boundary flag bit. // Parameters: // None. // Returned value: // packet header field [1] (bit 0~1). int getMsgBoundary() const; // Functionality: // Read the message inorder delivery flag bit. // Parameters: // None. // Returned value: // packet header field [1] (bit 2). bool getMsgOrderFlag() const; // Functionality: // Read the message sequence number. // Parameters: // None. // Returned value: // packet header field [1] (bit 3~31). int32_t getMsgSeq() const; // Functionality: // Clone this packet. // Parameters: // None. // Returned value: // Pointer to the new packet. CPacket* clone() const; protected: uint32_t m_nHeader[4]; // The 128-bit header field iovec m_PacketVector[2]; // The 2-demension vector of UDT packet [header, data] int32_t __pad; protected: CPacket& operator=(const CPacket&); };
它的数据成员是有4个uint32_t元素的数组m_nHeader,描述UDT Packet的Header,和有两个元素的iovec数组m_PacketVector。另外的几个引用则主要是为了方便对这些数据成员的访问,看下CPacket的构造函数就一目了然了(src/packet.cpp):
// Set up the aliases in the constructure CPacket::CPacket() : m_iSeqNo((int32_t&) (m_nHeader[0])), m_iMsgNo((int32_t&) (m_nHeader[1])), m_iTimeStamp((int32_t&) (m_nHeader[2])), m_iID((int32_t&) (m_nHeader[3])), m_pcData((char*&) (m_PacketVector[1].iov_base)), __pad() { for (int i = 0; i < 4; ++i) m_nHeader[i] = 0; m_PacketVector[0].iov_base = (char *) m_nHeader; m_PacketVector[0].iov_len = CPacket::m_iPktHdrSize; m_PacketVector[1].iov_base = NULL; m_PacketVector[1].iov_len = 0; }
注意m_PacketVector的第一个元素指向了m_nHeader。
在CPacket::pack()中:
void CPacket::pack(int pkttype, void* lparam, void* rparam, int size) { // Set (bit-0 = 1) and (bit-1~15 = type) m_nHeader[0] = 0x80000000 | (pkttype << 16); // Set additional information and control information field switch (pkttype) { case 2: //0010 - Acknowledgement (ACK) // ACK packet seq. no. if (NULL != lparam) m_nHeader[1] = *(int32_t *) lparam; // data ACK seq. no. // optional: RTT (microsends), RTT variance (microseconds) advertised flow window size (packets), and estimated link capacity (packets per second) m_PacketVector[1].iov_base = (char *) rparam; m_PacketVector[1].iov_len = size; break; case 6: //0110 - Acknowledgement of Acknowledgement (ACK-2) // ACK packet seq. no. m_nHeader[1] = *(int32_t *) lparam; // control info field should be none // but "writev" does not allow this m_PacketVector[1].iov_base = (char *) &__pad; //NULL; m_PacketVector[1].iov_len = 4; //0; break; case 3: //0011 - Loss Report (NAK) // loss list m_PacketVector[1].iov_base = (char *) rparam; m_PacketVector[1].iov_len = size; break; case 4: //0100 - Congestion Warning // control info field should be none // but "writev" does not allow this m_PacketVector[1].iov_base = (char *) &__pad; //NULL; m_PacketVector[1].iov_len = 4; //0; break; case 1: //0001 - Keep-alive // control info field should be none // but "writev" does not allow this m_PacketVector[1].iov_base = (char *) &__pad; //NULL; m_PacketVector[1].iov_len = 4; //0; break; case 0: //0000 - Handshake // control info filed is handshake info m_PacketVector[1].iov_base = (char *) rparam; m_PacketVector[1].iov_len = size; //sizeof(CHandShake); break; case 5: //0101 - Shutdown // control info field should be none // but "writev" does not allow this m_PacketVector[1].iov_base = (char *) &__pad; //NULL; m_PacketVector[1].iov_len = 4; //0; break; case 7: //0111 - Message Drop Request // msg id m_nHeader[1] = *(int32_t *) lparam; //first seq no, last seq no m_PacketVector[1].iov_base = (char *) rparam; m_PacketVector[1].iov_len = size; break; case 8: //1000 - Error Signal from the Peer Side // Error type m_nHeader[1] = *(int32_t *) lparam; // control info field should be none // but "writev" does not allow this m_PacketVector[1].iov_base = (char *) &__pad; //NULL; m_PacketVector[1].iov_len = 4; //0; break; case 32767: //0x7FFF - Reserved for user defined control packets // for extended control packet // "lparam" contains the extended type information for bit 16 - 31 // "rparam" is the control information m_nHeader[0] |= *(int32_t *) lparam; if (NULL != rparam) { m_PacketVector[1].iov_base = (char *) rparam; m_PacketVector[1].iov_len = size; } else { m_PacketVector[1].iov_base = (char *) &__pad; m_PacketVector[1].iov_len = 4; } break; default: break; } }
在CPacket::pack()中,首先将m_nHeader[0],也就是m_iSeqNo的bit-0设为1表示这是一个控制包,将bit-1~15设置为消息的类型,然后根据消息的不同类型进行不同的处理。对于Handshake消息,其pkttype为0,这里主要关注pkttype为0的case。可见它就是让m_PacketVector[1]指向前面创建的缓冲区。
7. 将Handshake消息m_ConnReq序列化进前面创建的缓冲区,并正确地设置CPacket request的长度:
void CPacket::setLength(int len) { m_PacketVector[1].iov_len = len; } int CHandShake::serialize(char* buf, int& size) { if (size < m_iContentSize) return -1; int32_t* p = (int32_t*) buf; *p++ = m_iVersion; *p++ = m_iType; *p++ = m_iISN; *p++ = m_iMSS; *p++ = m_iFlightFlagSize; *p++ = m_iReqType; *p++ = m_iID; *p++ = m_iCookie; for (int i = 0; i < 4; ++i) *p++ = m_piPeerIP[i]; size = m_iContentSize; return 0; }
序列化时,会将Handshake消息m_ConnReq全部的内容拷贝进缓冲区。略感奇怪,这个地方竟然完全没有顾及字节序的问题。
8. 调用发送队列的sendto()函数,向目标地址发送消息:
int CSndQueue::sendto(const sockaddr* addr, CPacket& packet) { // send out the packet immediately (high priority), this is a control packet m_pChannel->sendto(addr, packet); return packet.getLength(); }
CSndQueue的sendto()函数直接调用了CChannel::sendto():
int CChannel::sendto(const sockaddr* addr, CPacket& packet) const { cout << "CChannel send packet " << packet.m_iID << endl << endl; // convert control information into network order if (packet.getFlag()) for (int i = 0, n = packet.getLength() / 4; i < n; ++i) *((uint32_t *) packet.m_pcData + i) = htonl(*((uint32_t *) packet.m_pcData + i)); // convert packet header into network order //for (int j = 0; j < 4; ++ j) // packet.m_nHeader[j] = htonl(packet.m_nHeader[j]); uint32_t* p = packet.m_nHeader; for (int j = 0; j < 4; ++j) { *p = htonl(*p); ++p; } #ifndef WIN32 msghdr mh; mh.msg_name = (sockaddr*) addr; mh.msg_namelen = m_iSockAddrSize; mh.msg_iov = (iovec*) packet.m_PacketVector; mh.msg_iovlen = 2; mh.msg_control = NULL; mh.msg_controllen = 0; mh.msg_flags = 0; int res = ::sendmsg(m_iSocket, &mh, 0); #else DWORD size = CPacket::m_iPktHdrSize + packet.getLength(); int addrsize = m_iSockAddrSize; int res = ::WSASendTo(m_iSocket, (LPWSABUF)packet.m_PacketVector, 2, &size, 0, addr, addrsize, NULL, NULL); res = (0 == res) ? size : -1; #endif // convert back into local host order //for (int k = 0; k < 4; ++ k) // packet.m_nHeader[k] = ntohl(packet.m_nHeader[k]); p = packet.m_nHeader; for (int k = 0; k < 4; ++k) { *p = ntohl(*p); ++p; } if (packet.getFlag()) { for (int l = 0, n = packet.getLength() / 4; l < n; ++l) *((uint32_t *) packet.m_pcData + l) = ntohl(*((uint32_t *) packet.m_pcData + l)); } return res; }
在CChannel::sendto()中会处理Header的字节序问题。
这里总结一下,UDT Client向UDT Server发送的连接建立请求消息的内容:消息主要分为两个部分一个是消息的Header,一个是消息的Content。Header为4个uint32_t类型变量,从前到后这4个变量的含义分别为sequence number,message number,timestamp和目标SocketID。就Handshake而言,sequence number的最高位,也就是bit-0为1,表示这是一个控制消息,bit-1~15为pkttype 0,其它位为0;message number及timestamp均为0,目标SocketID为0。
Content部分,总共48个字节,主要用于进行连接的协商,如MSS等,具体可以看CHandShake。
9. 检查是否是同步接收模式。如果不是的话,则delete掉前面为request CPacket的CHandShake创建的缓冲区并退出。后面与UDT Server端进一步的消息交互会有接收队列等帮忙异步地推动。否则继续执行。值得一提的是,CUDT在其构造函数中,会将m_bSynRecving置为true,但在拷贝构造函数中,则会继承传入的值。但这个值如同MSS值一样,也可以通过UDT::setOpt()设置。也就是说由应用程序创建的UDT Socket默认处于同步接收模式,比如Listening的UDT Socket和发起连接的UDT Socket,但可以自行设置,由Listening的UDT Socket在接收到连接建立请求时创建的UDT Socket,则会继承Listening UDT Socket的对应值。
我们暂时先看SynRecving模式,也就是默认模式下的UDT Socket的行为。
10. 创建一个CPacket response,同样为它创建一个大小为m_iPayloadSize的缓冲区以存放数据,并将缓冲区pack进response中。这个CPacket response会被用来存放从UDT Server发回的相应的信息。
11. 进入一个循环执行后续的握手动作,及消息的超时重传等动作。可以将这个循环看做由3个部分组成。
循环开始的地方是一段发送消息的代码,在这段代码中,其实做了两个事情,或者说可能会发送两种类型的消息,一是第一个握手消息的超时重传,二是第二个握手消息的发送及超时重传。看上去发送的都是CHandShake m_ConnReq,但在接收到第一个握手消息的响应之后,这个结构的某些成员会根据响应而被修改。注意,发送第一个握手消息之后,首次进入循环,将会跳过这个部分。
之后的第二部分,主要用于接收响应,第一个握手消息的响应及第二个握手消息的响应。来看CRcvQueue::recvfrom()(src/queue.cpp):
int CRcvQueue::recvfrom(int32_t id, CPacket& packet) { CGuard bufferlock(m_PassLock); map<int32_t, std::queue<CPacket*> >::iterator i = m_mBuffer.find(id); if (i == m_mBuffer.end()) { #ifndef WIN32 uint64_t now = CTimer::getTime(); timespec timeout; timeout.tv_sec = now / 1000000 + 1; timeout.tv_nsec = (now % 1000000) * 1000; pthread_cond_timedwait(&m_PassCond, &m_PassLock, &timeout); #else ReleaseMutex(m_PassLock); WaitForSingleObject(m_PassCond, 1000); WaitForSingleObject(m_PassLock, INFINITE); #endif i = m_mBuffer.find(id); if (i == m_mBuffer.end()) { packet.setLength(-1); return -1; } } // retrieve the earliest packet CPacket* newpkt = i->second.front(); if (packet.getLength() < newpkt->getLength()) { packet.setLength(-1); return -1; } // copy packet content memcpy(packet.m_nHeader, newpkt->m_nHeader, CPacket::m_iPktHdrSize); memcpy(packet.m_pcData, newpkt->m_pcData, newpkt->getLength()); packet.setLength(newpkt->getLength()); delete[] newpkt->m_pcData; delete newpkt; // remove this message from queue, // if no more messages left for this socket, release its data structure i->second.pop(); if (i->second.empty()) m_mBuffer.erase(i); return packet.getLength(); }
这也是一个生产者-消费者模型,在这里就如同listen的过程一样,也只能看到这个生产与消费的故事的一半,即消费的那一半。生产者也是RcvQueue的worker线程。这个地方会等待着消息的到来,但也不会无限制的等待,可以看到,这里接收消息的等待时间大概为1s。这里是在等待一个CPacket队列的出现,也就是m_mBuffer中目标UDT Socket的CPacket队列。这里会从这个队列中取出第一个packet返回给调用者。如果队列被取空了,会直接将这个队列从m_mBuffer中移除出去。
循环的第三部分是整个连接建立消息交互过程的超时处理,可以看到,非Rendezvous模式下超时时间为3s,Rendezvous模式下,超时时间则会延长十倍。
CUDT::connect()执行到接收第一个握手消息的相应时,连接建立请求的发起也算是基本完成了。下面来看UDT Server端收到这个消息时是如何处理的。
UDT Server对首个Handshake消息的处理
来看UDT Server端收到这个消息时是如何处理的。如我们前面在 UDT协议实现分析——bind、listen与accept 一文中了解到的,Listening的UDT Socket会在UDT::accept()中等待连接请求进来,那是一个生产者与消费者的故事,UDT::accept()是生产者,接收队列RcvQueue的worker线程是消费者。
我们这就来仔细地看一下RcvQueue的worker线程,当然重点会关注对于Handshake消息,也就是目标SocketID为0,pkttype为0的packet的处理(src/queue.cpp):
#ifndef WIN32 void* CRcvQueue::worker(void* param) #else DWORD WINAPI CRcvQueue::worker(LPVOID param) #endif { CRcvQueue* self = (CRcvQueue*) param; sockaddr* addr = (AF_INET == self->m_UnitQueue.m_iIPversion) ? (sockaddr*) new sockaddr_in : (sockaddr*) new sockaddr_in6; CUDT* u = NULL; int32_t id; while (!self->m_bClosing) { #ifdef NO_BUSY_WAITING self->m_pTimer->tick(); #endif // check waiting list, if new socket, insert it to the list while (self->ifNewEntry()) { CUDT* ne = self->getNewEntry(); if (NULL != ne) { self->m_pRcvUList->insert(ne); self->m_pHash->insert(ne->m_SocketID, ne); } } // find next available slot for incoming packet CUnit* unit = self->m_UnitQueue.getNextAvailUnit(); if (NULL == unit) { // no space, skip this packet CPacket temp; temp.m_pcData = new char[self->m_iPayloadSize]; temp.setLength(self->m_iPayloadSize); self->m_pChannel->recvfrom(addr, temp); delete[] temp.m_pcData; goto TIMER_CHECK; } unit->m_Packet.setLength(self->m_iPayloadSize); // reading next incoming packet, recvfrom returns -1 is nothing has been received if (self->m_pChannel->recvfrom(addr, unit->m_Packet) < 0) goto TIMER_CHECK; id = unit->m_Packet.m_iID; // ID 0 is for connection request, which should be passed to the listening socket or rendezvous sockets if (0 == id) { if (NULL != self->m_pListener) self->m_pListener->listen(addr, unit->m_Packet); else if (NULL != (u = self->m_pRendezvousQueue->retrieve(addr, id))) { // asynchronous connect: call connect here // otherwise wait for the UDT socket to retrieve this packet if (!u->m_bSynRecving) u->connect(unit->m_Packet); else self->storePkt(id, unit->m_Packet.clone()); } } else if (id > 0) { if (NULL != (u = self->m_pHash->lookup(id))) { if (CIPAddress::ipcmp(addr, u->m_pPeerAddr, u->m_iIPversion)) { if (u->m_bConnected && !u->m_bBroken && !u->m_bClosing) { if (0 == unit->m_Packet.getFlag()) u->processData(unit); else u->processCtrl(unit->m_Packet); u->checkTimers(); self->m_pRcvUList->update(u); } } } else if (NULL != (u = self->m_pRendezvousQueue->retrieve(addr, id))) { if (!u->m_bSynRecving) u->connect(unit->m_Packet); else self->storePkt(id, unit->m_Packet.clone()); } } TIMER_CHECK: // take care of the timing event for all UDT sockets uint64_t currtime; CTimer::rdtsc(currtime); CRNode* ul = self->m_pRcvUList->m_pUList; uint64_t ctime = currtime - 100000 * CTimer::getCPUFrequency(); while ((NULL != ul) && (ul->m_llTimeStamp < ctime)) { CUDT* u = ul->m_pUDT; if (u->m_bConnected && !u->m_bBroken && !u->m_bClosing) { u->checkTimers(); self->m_pRcvUList->update(u); } else { // the socket must be removed from Hash table first, then RcvUList self->m_pHash->remove(u->m_SocketID); self->m_pRcvUList->remove(u); u->m_pRNode->m_bOnList = false; } ul = self->m_pRcvUList->m_pUList; } // Check connection requests status for all sockets in the RendezvousQueue. self->m_pRendezvousQueue->updateConnStatus(); } if (AF_INET == self->m_UnitQueue.m_iIPversion) delete (sockaddr_in*) addr; else delete (sockaddr_in6*) addr; #ifndef WIN32 return NULL; #else SetEvent(self->m_ExitCond); return 0; #endif }
这个函数,首先创建了一个sockaddr,用于保存发送端的地址。
然后就进入了一个循环,不断地接收UDP消息。
循环内的第一行是执行Timer的tick(),这个是UDT自己的定时器Timer机制的一部分。
接下来的这个子循环也主要与RcvQueue的worker线程中消息的dispatch机制有关。
然后是取一个CUnit,用来接收其它端点发送过来的消息。如果取不到,则接收UDP包并丢弃。然后跳过后面消息dispatch的过程。这个地方的m_UnitQueue用来做缓存,也用来防止收到过多的包消耗过多的资源。完整的CUnitQueue机制暂时先不去仔细分析。
然后就是取到了CUnit的情况,则先通过CChannel接收一个包,并根据包的内容进行包的dispatch。不能跑偏了,这里主要关注目标SocketID为0,pkttype为0的包的dispatch。可以看到,在Listener存在的情况下,是dispatch给了listener,也就是Listening的UDT Socket的CUDT的listen()函数,否则会dispatch给通道上处于Rendezvous模式的UDT Socket。(在 UDT协议实现分析——bind、listen与accept 一文中关于listen的部分有具体理过这个listener的设置过程。)可以看到,对于相同的通道CChannel,也就是同一个端口上,Rendezvous模式下的UDT Socket和Listening的UDT Socket不能共存,或者说同时存在时,Rendezvous的行为可能不是预期的,但多个处于Rendezvous模式下的UDT Socket可以共存。
接收队列CRcvQueue的worker()线程做的其它事情,暂时先不去仔细看。这里先来理一下Listening的UDT Socket在接收到Handshake消息的处理过程,也就是CUDT::listen(sockaddr* addr, CPacket& packet)(src/core.cpp):
int CUDT::listen(sockaddr* addr, CPacket& packet) { if (m_bClosing) return 1002; if (packet.getLength() != CHandShake::m_iContentSize) return 1004; CHandShake hs; hs.deserialize(packet.m_pcData, packet.getLength()); // SYN cookie char clienthost[NI_MAXHOST]; char clientport[NI_MAXSERV]; getnameinfo(addr, (AF_INET == m_iVersion) ? sizeof(sockaddr_in) : sizeof(sockaddr_in6), clienthost, sizeof(clienthost), clientport, sizeof(clientport), NI_NUMERICHOST | NI_NUMERICSERV); int64_t timestamp = (CTimer::getTime() - m_StartTime) / 60000000; // secret changes every one minute stringstream cookiestr; cookiestr << clienthost << ":" << clientport << ":" << timestamp; unsigned char cookie[16]; CMD5::compute(cookiestr.str().c_str(), cookie); if (1 == hs.m_iReqType) { hs.m_iCookie = *(int*) cookie; packet.m_iID = hs.m_iID; int size = packet.getLength(); hs.serialize(packet.m_pcData, size); m_pSndQueue->sendto(addr, packet); return 0; } else { if (hs.m_iCookie != *(int*) cookie) { timestamp--; cookiestr << clienthost << ":" << clientport << ":" << timestamp; CMD5::compute(cookiestr.str().c_str(), cookie); if (hs.m_iCookie != *(int*) cookie) return -1; } } int32_t id = hs.m_iID; // When a peer side connects in... if ((1 == packet.getFlag()) && (0 == packet.getType())) { if ((hs.m_iVersion != m_iVersion) || (hs.m_iType != m_iSockType)) { // mismatch, reject the request hs.m_iReqType = 1002; int size = CHandShake::m_iContentSize; hs.serialize(packet.m_pcData, size); packet.m_iID = id; m_pSndQueue->sendto(addr, packet); } else { int result = s_UDTUnited.newConnection(m_SocketID, addr, &hs); if (result == -1) hs.m_iReqType = 1002; // send back a response if connection failed or connection already existed // new connection response should be sent in connect() if (result != 1) { int size = CHandShake::m_iContentSize; hs.serialize(packet.m_pcData, size); packet.m_iID = id; m_pSndQueue->sendto(addr, packet); } else { // a new connection has been created, enable epoll for write s_UDTUnited.m_EPoll.update_events(m_SocketID, m_sPollID, UDT_EPOLL_OUT, true); } } } return hs.m_iReqType; }
在这个函数中主要做了这样的一些事情:
1. 检查UDT Socket的状态,如果处于Closing状态下,就返回,否则继续执行。
2. 检查包的数据部分长度。若长度不为CHandShake::m_iContentSize 48字节,则说明这不是一个有效的Handshake,则返回,否则继续执行。
3. 创建一个CHandShake hs,并将传入的packet的数据部分反序列化进这个CHandShake。这里来扫一眼这个CHandShake::deserialize()(src/packet.cpp):
int CHandShake::deserialize(const char* buf, int size) { if (size < m_iContentSize) return -1; int32_t* p = (int32_t*) buf; m_iVersion = *p++; m_iType = *p++; m_iISN = *p++; m_iMSS = *p++; m_iFlightFlagSize = *p++; m_iReqType = *p++; m_iID = *p++; m_iCookie = *p++; for (int i = 0; i < 4; ++i) m_piPeerIP[i] = *p++; return 0; }
这个函数如同它的反函数serialize()一样没有处理字节序的问题。
4. 计算cookie值。所谓cookie值,即由连接发起端的网络地址(包括IP地址与端口号)及时间戳组成的字符串计算出来的16个字节长度的MD5值。时间戳精确到分钟值。用于计算MD5值的字符串类似127.0.0.1:49033:0。
5. 计算出来cookie值之后的部分,应该被分成两个部分。一部分处理连接发起端发送的地一个握手包,也就是hs.m_iReqType == 1的block,在CUDT::connect()中构造m_ConnReq的部分我们有看到这个值要被设为1的;另一部分则处理连接发起端发送的第二个握手消息。这里我们先来看hs.m_iReqType == 1的block。
它取前一步计算的cookie的前4个字节,直接将其强转为一个int值,赋给前面反序列化的CHandShake的m_iCookie。这个地方竟然顾及字节序的问题,也没有顾及不同平台的差异,即int类型的长度在不同的机器上可能不同,这个地方用int32_t似乎要更安全一点。将CHandShake的m_iID,如我们在CUDT::connect()中构造m_ConnReq的部分我们有看到的,为连接发起端UDT Socket的SocketID,设置给packet的m_iID,也就是包的目标SocketID。再将hs重新序列化进packet。通过发送队列SndQueue发送经过了这一番修改的packet。然后返回。
总结一下UDT Server中Listening的UDT Socket接收到第一个HandShake包时,对于这个包的处理过程:
计算一个cookie值,设置给接收到的HandShake的cookie字段,修改包的目标SocketID字段为发起连接的UDT Socket的SocketID,包的其它部分原封不动,最后将这个包重新发回给连接发起端。
UDT Client发送第二个HandShake消息
UDT Server接收到第一个HandShake消息,回给UDT Client一个HandShake消息。这样球就又被踢回给了UDT Client端。接着来看在UDT Client端接收到首个HandShake包的响应后会做什么样的处理。
我们知道在CUDT::connect(const sockaddr* serv_addr)中,发送首个HandShake包之后,会调用CRcvQueue::recvfrom()来等着接收UDT Server的响应,消费者焦急地等待着食物的到来。在消息到来时,CUDT::connect()会被生产者,也就是CRcvQueue的worker线程唤醒。这里就来具体看一下这个生产与消费的故事的另一半,生产的故事,也就是CRcvQueue的worker线程的消息dispatch。
在CRcvQueue::worker()中包dispatch的部分可以看到:
} else if (id > 0) { if (NULL != (u = self->m_pHash->lookup(id))) { if (CIPAddress::ipcmp(addr, u->m_pPeerAddr, u->m_iIPversion)) { cout << "Receive packet by m_pHash table" << endl; if (u->m_bConnected && !u->m_bBroken && !u->m_bClosing) { if (0 == unit->m_Packet.getFlag()) u->processData(unit); else u->processCtrl(unit->m_Packet); u->checkTimers(); self->m_pRcvUList->update(u); } } } else if (NULL != (u = self->m_pRendezvousQueue->retrieve(addr, id))) { cout << "Receive packet by m_pRendezvousQueue, u->m_bSynRecving " << u->m_bSynRecving << endl; if (!u->m_bSynRecving) u->connect(unit->m_Packet); else self->storePkt(id, unit->m_Packet.clone()); } }
我们知道UDT Server回复的消息中是设置了目标SocketID了的。因而会走id > 0的block。
在CUDT::connect(
const sockaddr* serv_addr
)中有看到调用m_pRcvQueue->registerConnector()将CUDT添加进RcvQueue的m_pRendezvousQueue中,因而这里会执行id > 0 block中下面的那个block。
如果前面对于m_bSynRecving的分析,默认情况为true。因而这个地方会执行CRcvQueue::storePkt()来存储包。来看这个函数的实现:
void CRcvQueue::storePkt(int32_t id, CPacket* pkt) { CGuard bufferlock(m_PassLock); map<int32_t, std::queue<CPacket*> >::iterator i = m_mBuffer.find(id); if (i == m_mBuffer.end()) { m_mBuffer[id].push(pkt); #ifndef WIN32 pthread_cond_signal(&m_PassCond); #else SetEvent(m_PassCond); #endif } else { //avoid storing too many packets, in case of malfunction or attack if (i->second.size() > 16) return; i->second.push(pkt); } }
在这个函数中会保存接收到的packet,并在必要的时候唤醒等待接收消息的线程。(对应CRcvQueue::recvfrom()的逻辑来看。)
然后来看CUDT::connect(const sockaddr* serv_addr)在收到第一个HandShake消息的响应之后会做什么样的处理,也就是CUDT::connect(const CPacket& response)(src/core.cpp):
int CUDT::connect(const CPacket& response) throw () { // this is the 2nd half of a connection request. If the connection is setup successfully this returns 0. // returning -1 means there is an error. // returning 1 or 2 means the connection is in process and needs more handshake if (!m_bConnecting) return -1; if (m_bRendezvous && ((0 == response.getFlag()) || (1 == response.getType())) && (0 != m_ConnRes.m_iType)) { //a data packet or a keep-alive packet comes, which means the peer side is already connected // in this situation, the previously recorded response will be used goto POST_CONNECT; } if ((1 != response.getFlag()) || (0 != response.getType())) return -1; m_ConnRes.deserialize(response.m_pcData, response.getLength()); if (m_bRendezvous) { // regular connect should NOT communicate with rendezvous connect // rendezvous connect require 3-way handshake if (1 == m_ConnRes.m_iReqType) return -1; if ((0 == m_ConnReq.m_iReqType) || (0 == m_ConnRes.m_iReqType)) { m_ConnReq.m_iReqType = -1; // the request time must be updated so that the next handshake can be sent out immediately. m_llLastReqTime = 0; return 1; } } else { // set cookie if (1 == m_ConnRes.m_iReqType) { m_ConnReq.m_iReqType = -1; m_ConnReq.m_iCookie = m_ConnRes.m_iCookie; m_llLastReqTime = 0; return 1; } }
这个函数会处理第一个HandShake的响应,也会处理第二个HandShake的响应,这里先来关注第一个HandShake的响应的处理,因而只列出它的一部分的代码。
这个函数先是检查了CUDT的状态,检查了packet的有效性,然后就是将接收到的包的数据部分反序列化至CHandShake m_ConnRes中。我们不关注对于Rendezvous模式的处理。
接着会检查m_ConnRes的m_iReqType,若为1,则设置m_ConnReq.m_iReqType为-1,设置m_ConnReq.m_iCookie为m_ConnRes.m_iCookie用以标识m_ConnReq为一个合法的第二个HandShake packet;同时设置m_llLastReqTime为0,如我们前面对CUDT::connect(const sockaddr* serv_addr)的分析,以便于此刻保存于m_ConnReq中的第二个HandShake能够被发送出去as soon as possible。
这第二个HandShake,与第一个HandShake的差异仅仅在于有了有效的Cookie值,且请求类型ReqType为-1。其它则完全一样。
UDT Server对第二个HandShake的处理
UDT Client对于m_ConnReq的改变并不足以改变接收队列中worker线程对这个包的dispatch规则,因而直接来看CUDT::listen(sockaddr* addr, CPacket& packet)中对于这第二个HandShake消息的处理。
接着前面对于这个函数的分析,接前面的第4步。
5. 对于这第二个HandShake,它的ReqType自然不再是1了,而是-1。因而在计算完了cookie值之后,它会先验证一下HandShake包中的cookie值是否是有效的,如果无效,则直接返回。根据这个地方的逻辑,可以看到cookie的有效时间最长为2分钟。
6. 检查包的Flag和Type,如果不是HandShake包,则直接返回,否则继续执行。
7. 检查连接发起端IP的版本及Socket类型SockType与本地Listen的UDT Socket是否匹配。若不匹配,则将错误码1002放在发过来的HandShanke的ReqType字段中,设置packet的目标SocketID为发起连接的SocketID,然后将这个包重新发回给UDT Client。
8. 检查之后,发现完全匹配的情况。调用CUDTUnited::newConnection()创建一个新的UDT Socket。若创建过程执行失败,则将错误码1002放在发过来的HandShanke的ReqType字段中。若创建成功,会设置发过来的packet的目标SocketID为适当的值,然后将同一个包再发送回UDT Client。CUDTUnited::newConnection()会适当地修改HandShake packet的一些字段。若失败在执行s_UDTUnited.m_EPoll.update_events()。
9. 返回hs.m_iReqType。
然后来看在CUDTUnited::newConnection()中是如何新建Socket的:
int CUDTUnited::newConnection(const UDTSOCKET listen, const sockaddr* peer, CHandShake* hs) { CUDTSocket* ns = NULL; CUDTSocket* ls = locate(listen); if (NULL == ls) return -1; // if this connection has already been processed if (NULL != (ns = locate(peer, hs->m_iID, hs->m_iISN))) { if (ns->m_pUDT->m_bBroken) { // last connection from the "peer" address has been broken ns->m_Status = CLOSED; ns->m_TimeStamp = CTimer::getTime(); CGuard::enterCS(ls->m_AcceptLock); ls->m_pQueuedSockets->erase(ns->m_SocketID); ls->m_pAcceptSockets->erase(ns->m_SocketID); CGuard::leaveCS(ls->m_AcceptLock); } else { // connection already exist, this is a repeated connection request // respond with existing HS information hs->m_iISN = ns->m_pUDT->m_iISN; hs->m_iMSS = ns->m_pUDT->m_iMSS; hs->m_iFlightFlagSize = ns->m_pUDT->m_iFlightFlagSize; hs->m_iReqType = -1; hs->m_iID = ns->m_SocketID; return 0; //except for this situation a new connection should be started } } // exceeding backlog, refuse the connection request if (ls->m_pQueuedSockets->size() >= ls->m_uiBackLog) return -1; try { ns = new CUDTSocket; ns->m_pUDT = new CUDT(*(ls->m_pUDT)); if (AF_INET == ls->m_iIPversion) { ns->m_pSelfAddr = (sockaddr*) (new sockaddr_in); ((sockaddr_in*) (ns->m_pSelfAddr))->sin_port = 0; ns->m_pPeerAddr = (sockaddr*) (new sockaddr_in); memcpy(ns->m_pPeerAddr, peer, sizeof(sockaddr_in)); } else { ns->m_pSelfAddr = (sockaddr*) (new sockaddr_in6); ((sockaddr_in6*) (ns->m_pSelfAddr))->sin6_port = 0; ns->m_pPeerAddr = (sockaddr*) (new sockaddr_in6); memcpy(ns->m_pPeerAddr, peer, sizeof(sockaddr_in6)); } } catch (...) { delete ns; return -1; } CGuard::enterCS(m_IDLock); ns->m_SocketID = --m_SocketID; cout << "new CUDTSocket SocketID is " << ns->m_SocketID << " PeerID " << hs->m_iID << endl; CGuard::leaveCS(m_IDLock); ns->m_ListenSocket = listen; ns->m_iIPversion = ls->m_iIPversion; ns->m_pUDT->m_SocketID = ns->m_SocketID; ns->m_PeerID = hs->m_iID; ns->m_iISN = hs->m_iISN; int error = 0; try { // bind to the same addr of listening socket ns->m_pUDT->open(); updateMux(ns, ls); ns->m_pUDT->connect(peer, hs); } catch (...) { error = 1; goto ERR_ROLLBACK; } ns->m_Status = CONNECTED; // copy address information of local node ns->m_pUDT->m_pSndQueue->m_pChannel->getSockAddr(ns->m_pSelfAddr); CIPAddress::pton(ns->m_pSelfAddr, ns->m_pUDT->m_piSelfIP, ns->m_iIPversion); // protect the m_Sockets structure. CGuard::enterCS(m_ControlLock); try { m_Sockets[ns->m_SocketID] = ns; m_PeerRec[(ns->m_PeerID << 30) + ns->m_iISN].insert(ns->m_SocketID); } catch (...) { error = 2; } CGuard::leaveCS(m_ControlLock); CGuard::enterCS(ls->m_AcceptLock); try { ls->m_pQueuedSockets->insert(ns->m_SocketID); } catch (...) { error = 3; } CGuard::leaveCS(ls->m_AcceptLock); // acknowledge users waiting for new connections on the listening socket m_EPoll.update_events(listen, ls->m_pUDT->m_sPollID, UDT_EPOLL_IN, true); CTimer::triggerEvent(); ERR_ROLLBACK: if (error > 0) { ns->m_pUDT->close(); ns->m_Status = CLOSED; ns->m_TimeStamp = CTimer::getTime(); return -1; } // wake up a waiting accept() call #ifndef WIN32 pthread_mutex_lock(&(ls->m_AcceptLock)); pthread_cond_signal(&(ls->m_AcceptCond)); pthread_mutex_unlock(&(ls->m_AcceptLock)); #else SetEvent(ls->m_AcceptCond); #endif return 1; }
在这个函数中做了如下这样的一些事情:
1. 找到listening的UDT Socket的CUDTSocket结构,若找不到则直接返回-1。否则继续执行。
2. 检查相同的连接请求是否已经处理过了。在CUDTUnited有一个专门的缓冲区m_PeerRec,用来存放由Listening的Socket创建的UDT Socket,这里主要是通过在这个缓冲区中查找是否已经有connection请求对应的socket来判断:
CUDTSocket* CUDTUnited::locate(const sockaddr* peer, const UDTSOCKET id, int32_t isn) { CGuard cg(m_ControlLock); map<int64_t, set<UDTSOCKET> >::iterator i = m_PeerRec.find((id << 30) + isn); if (i == m_PeerRec.end()) return NULL; for (set<UDTSOCKET>::iterator j = i->second.begin(); j != i->second.end(); ++j) { map<UDTSOCKET, CUDTSocket*>::iterator k = m_Sockets.find(*j); // this socket might have been closed and moved m_ClosedSockets if (k == m_Sockets.end()) continue; if (CIPAddress::ipcmp(peer, k->second->m_pPeerAddr, k->second->m_iIPversion)) return k->second; } return NULL; }
如果已经为这个connection请求创建了UDT Socket,又分为两种情况:
(1). 为connection请求创建的UDT Socket还是好的,可用的,则根据之前创建的UDT Socket的一些字段设置接收到的HandShake,m_iReqType会被设置为-1,m_iID会被设置为UDT Socket的SocketID。然后返回0。如我们前面在CUDTUnited::newConnection()中看到的,这样返回之后,CUDTUnited::newConnection()会发送一个响应消息给UDT Client。
(2). 为connection请求创建的UDT Socket已经烂掉了,不可用了,此时则主要会将其状态设置为CLOSED,设置时间戳,将其从m_pQueuedSockets和m_pAcceptSockets中移除出去。然后执行后续的新建UDT Socket的流程。
但对于一个由Listening Socket创建的UDT Socket而言,又会是什么原因导致它处于broken状态呢?此处这样的检查是否真有必要呢?后面会再来研究。
3. 检查m_pQueuedSockets的大小是否超出了为Listening的UDT Socket设置的backlog大小,若超出,则返回-1,否则继续执行。
4. 创建一个CUDTSocket对象。创建一个CUDT对象,这里创建的CUDT对象会继承Listening的UDT Socket的许多属性(src/api.cpp):
CUDT::CUDT(const CUDT& ancestor) { m_pSndBuffer = NULL; m_pRcvBuffer = NULL; m_pSndLossList = NULL; m_pRcvLossList = NULL; m_pACKWindow = NULL; m_pSndTimeWindow = NULL; m_pRcvTimeWindow = NULL; m_pSndQueue = NULL; m_pRcvQueue = NULL; m_pPeerAddr = NULL; m_pSNode = NULL; m_pRNode = NULL; // Initilize mutex and condition variables initSynch(); // Default UDT configurations m_iMSS = ancestor.m_iMSS; m_bSynSending = ancestor.m_bSynSending; m_bSynRecving = ancestor.m_bSynRecving; m_iFlightFlagSize = ancestor.m_iFlightFlagSize; m_iSndBufSize = ancestor.m_iSndBufSize; m_iRcvBufSize = ancestor.m_iRcvBufSize; m_Linger = ancestor.m_Linger; m_iUDPSndBufSize = ancestor.m_iUDPSndBufSize; m_iUDPRcvBufSize = ancestor.m_iUDPRcvBufSize; m_iSockType = ancestor.m_iSockType; m_iIPversion = ancestor.m_iIPversion; m_bRendezvous = ancestor.m_bRendezvous; m_iSndTimeOut = ancestor.m_iSndTimeOut; m_iRcvTimeOut = ancestor.m_iRcvTimeOut; m_bReuseAddr = true; // this must be true, because all accepted sockets shared the same port with the listener m_llMaxBW = ancestor.m_llMaxBW; m_pCCFactory = ancestor.m_pCCFactory->clone(); m_pCC = NULL; m_pCache = ancestor.m_pCache; // Initial status m_bOpened = false; m_bListening = false; m_bConnecting = false; m_bConnected = false; m_bClosing = false; m_bShutdown = false; m_bBroken = false; m_bPeerHealth = true; m_ullLingerExpiration = 0; }
为SelfAddr分配内存。
为PeerAddr分配内存。
拷贝发送端地址到PeerAddr。
设置SocketID。等等。
5. 执行ns->m_pUDT->open()完成打开动作。然后执行updateMux(ns, ls),将新建的这个UDT Socket绑定到Listening的UDT Socket所绑定的多路复用器:
void CUDTUnited::updateMux(CUDTSocket* s, const CUDTSocket* ls) { CGuard cg(m_ControlLock); int port = (AF_INET == ls->m_iIPversion) ? ntohs(((sockaddr_in*) ls->m_pSelfAddr)->sin_port) : ntohs(((sockaddr_in6*) ls->m_pSelfAddr)->sin6_port); // find the listener‘s address for (map<int, CMultiplexer>::iterator i = m_mMultiplexer.begin(); i != m_mMultiplexer.end(); ++i) { if (i->second.m_iPort == port) { // reuse the existing multiplexer ++i->second.m_iRefCount; s->m_pUDT->m_pSndQueue = i->second.m_pSndQueue; s->m_pUDT->m_pRcvQueue = i->second.m_pRcvQueue; s->m_iMuxID = i->second.m_iID; return; } } }
6. 执行
ns->m_pUDT->connect(peer, hs):
void CUDT::connect(const sockaddr* peer, CHandShake* hs) { CGuard cg(m_ConnectionLock); // Uses the smaller MSS between the peers if (hs->m_iMSS > m_iMSS) hs->m_iMSS = m_iMSS; else m_iMSS = hs->m_iMSS; // exchange info for maximum flow window size m_iFlowWindowSize = hs->m_iFlightFlagSize; hs->m_iFlightFlagSize = (m_iRcvBufSize < m_iFlightFlagSize) ? m_iRcvBufSize : m_iFlightFlagSize; m_iPeerISN = hs->m_iISN; m_iRcvLastAck = hs->m_iISN; m_iRcvLastAckAck = hs->m_iISN; m_iRcvCurrSeqNo = hs->m_iISN - 1; m_PeerID = hs->m_iID; hs->m_iID = m_SocketID; // use peer‘s ISN and send it back for security check m_iISN = hs->m_iISN; m_iLastDecSeq = m_iISN - 1; m_iSndLastAck = m_iISN; m_iSndLastDataAck = m_iISN; m_iSndCurrSeqNo = m_iISN - 1; m_iSndLastAck2 = m_iISN; m_ullSndLastAck2Time = CTimer::getTime(); // this is a reponse handshake hs->m_iReqType = -1; // get local IP address and send the peer its IP address (because UDP cannot get local IP address) memcpy(m_piSelfIP, hs->m_piPeerIP, 16); CIPAddress::ntop(peer, hs->m_piPeerIP, m_iIPversion); m_iPktSize = m_iMSS - 28; m_iPayloadSize = m_iPktSize - CPacket::m_iPktHdrSize; // Prepare all structures try { m_pSndBuffer = new CSndBuffer(32, m_iPayloadSize); m_pRcvBuffer = new CRcvBuffer(&(m_pRcvQueue->m_UnitQueue), m_iRcvBufSize); m_pSndLossList = new CSndLossList(m_iFlowWindowSize * 2); m_pRcvLossList = new CRcvLossList(m_iFlightFlagSize); m_pACKWindow = new CACKWindow(1024); m_pRcvTimeWindow = new CPktTimeWindow(16, 64); m_pSndTimeWindow = new CPktTimeWindow(); } catch (...) { throw CUDTException(3, 2, 0); } CInfoBlock ib; ib.m_iIPversion = m_iIPversion; CInfoBlock::convert(peer, m_iIPversion, ib.m_piIP); if (m_pCache->lookup(&ib) >= 0) { m_iRTT = ib.m_iRTT; m_iBandwidth = ib.m_iBandwidth; } m_pCC = m_pCCFactory->create(); m_pCC->m_UDT = m_SocketID; m_pCC->setMSS(m_iMSS); m_pCC->setMaxCWndSize(m_iFlowWindowSize); m_pCC->setSndCurrSeqNo(m_iSndCurrSeqNo); m_pCC->setRcvRate(m_iDeliveryRate); m_pCC->setRTT(m_iRTT); m_pCC->setBandwidth(m_iBandwidth); m_pCC->init(); m_ullInterval = (uint64_t) (m_pCC->m_dPktSndPeriod * m_ullCPUFrequency); m_dCongestionWindow = m_pCC->m_dCWndSize; m_pPeerAddr = (AF_INET == m_iIPversion) ? (sockaddr*) new sockaddr_in : (sockaddr*) new sockaddr_in6; memcpy(m_pPeerAddr, peer, (AF_INET == m_iIPversion) ? sizeof(sockaddr_in) : sizeof(sockaddr_in6)); // And of course, it is connected. m_bConnected = true; // register this socket for receiving data packets m_pRNode->m_bOnList = true; m_pRcvQueue->setNewEntry(this); //send the response to the peer, see listen() for more discussions about this CPacket response; int size = CHandShake::m_iContentSize; char* buffer = new char[size]; hs->serialize(buffer, size); response.pack(0, NULL, buffer, size); response.m_iID = m_PeerID; m_pSndQueue->sendto(peer, response); delete[] buffer; }
这个函数里会根据HandShake包设置非常多的成员。但主要来关注m_pRcvQueue->setNewEntry(this),这个调用也是与RcvQueue的worker线程的消息dispatch机制有关。后面我们会再来仔细地了解这个函数。
这个函数会在最后发送响应给UDT Client。
7. 将UDT Socket的状态置为CONNECTED。拷贝Channel的地址到PeerAddr。
8. 将创建的CUDTSocket放进m_Sockets中,同时放进m_PeerRec中。
9. 将创建的UDT Socket放进m_pQueuedSockets中。这正是Listening UDT Socket accept那个生产-消费故事的另一半,这里是生产者。
10. 将等待在accept()的线程唤醒。至此在UDT Server端,accept()返回一个UDT Socket,UDT Server认为一个连接成功建立。
Done。