柯南君:看大数据时代下的IT架构(1)业界消息队列对比

一、MQ(Message Queue)

即消息队列,一般用于应用系统解耦、消息异步分发,能够提高系统吞吐量。MQ的产品有很多,有开源的,也有闭源,比如ZeroMQ、RabbitMQ、ActiveMQ、Kafka/Jafka、Kestrel、Beanstalkd、HornetQ、Apache Qpid、Sparrow、Starling、Amazon SQS、MSMQ等,甚至Redis也可以用来构造消息队列。至于如何取舍,取决于你的需求。
由于工作需要和兴趣爱好,曾经写过关于RabbitMQ的系列博文,对RabbitMQ的协议、安装、配置、管理、监控、持久化、分布式、高可用、分区、集群、负载均衡等做过详细介绍。这个系列的博文基本上能满足工作中的一般需求。

目前业界有很多MQ产品,我们作如下对比:

二、RabbitMQ

是使用Erlang编写的一个开源的消息队列,本身支持很多的协议:AMQP,XMPP, SMTP, STOMP,也正是如此,使的它变的非常重量级,更适合于企业级的开发。同时实现了一个经纪人(Broker)构架,这意味着消息在发送给客户端时先在中心队列排队。对路由(Routing),负载均衡(Load balance)或者数据持久化都有很好的支持。

详情参见:

三、Redis

是一个Key-Value的NoSQL数据库,开发维护很活跃,虽然它是一个Key-Value数据库存储系统,但它本身支持MQ功能,所以完全可以当做一个轻量级的队列服务来使用。对于RabbitMQ和Redis的入队和出队操作,各执行100万次,每10万次记录一次执行时间。测试数据分为128Bytes、512Bytes、1K和10K四个不同大小的数据。实验表明:入队时,当数据比较小时Redis的性能要高于RabbitMQ,而如果数据大小超过了10K,Redis则慢的无法忍受;出队时,无论数据大小,Redis都表现出非常好的性能,而RabbitMQ的出队性能则远低于Redis。
  入队 出队   128B 512B 1K 10K 128B 512B 1K 10K Redis

四、ZeroMQ 

号称最快的消息队列系统,尤其针对大吞吐量的需求场景。ZMQ能够实现RabbitMQ不擅长的高级/复杂的队列,但是开发人员需要自己组合多种技术框架,技术上的复杂度是对这MQ能够应用成功的挑战。ZeroMQ具有一个独特的非中间件的模式,你不需要安装和运行一个消息服务器或中间件,因为你的应用程序将扮演了这个服务角色。你只需要简单的引用ZeroMQ程序库,可以使用NuGet安装,然后你就可以愉快的在应用程序之间发送消息了。但是ZeroMQ仅提供非持久性的队列,也就是说如果down机,数据将会丢失。其中,Twitter的Storm中使用ZeroMQ作为数据流的传输。

五、ActiveMQ 

是Apache下的一个子项目。 类似于ZeroMQ,它能够以代理人和点对点的技术实现队列。同时类似于RabbitMQ,它少量代码就可以高效地实现高级应用场景。RabbitMQ、ZeroMQ、ActiveMQ均支持常用的多种语言客户端 C++、Java、.Net,、Python、 Php、 Ruby等。

六、Jafka/Kafka 

Kafka是Apache下的一个子项目,是一个高性能跨语言分布式Publish/Subscribe消息队列系统,而Jafka是在Kafka之上孵化而来的,即Kafka的一个升级版。具有以下特性:快速持久化,可以在O(1)的系统开销下进行消息持久化;高吞吐,在一台普通的服务器上既可以达到10W/s的吞吐速率;完全的分布式系统,Broker、Producer、Consumer都原生自动支持分布式,自动实现复杂均衡;支持Hadoop数据并行加载,对于像Hadoop的一样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案。Kafka通过Hadoop的并行加载机制来统一了在线和离线的消息处理,这一点也是本课题所研究系统所看重的。Apache
Kafka相对于ActiveMQ是一个非常轻量级的消息系统,除了性能非常好之外,还是一个工作良好的分布式系统。

其他一些队列列表HornetQ、Apache Qpid、Sparrow、Starling、Kestrel、Beanstalkd、Amazon SQS就不再一一分析。

通过以上的具体对比分析,TongLINK/Q与IBM的功能性相差不大,用户常用功能已经完全支持。虽然在功能上还比MQ稍微欠缺一些,但“SOAP消息的支持”和“数据库事务”这两个功能几乎没有多少实际的市场需求和应用,TongLINK/Q也没有花费更多的精力在对这两个功能的实现上,而且一直不懈的挖掘市场需求,为用户提供更加实用的功能,不断提高产品的性能和易用性。

TongLINK/Q提供的独有功能特性普遍受到了用户的认可,如文件传输功能是目前很多企业所实际需要的,而TongLINK/Q也一直仅仅抓住了这个国内的企业应用特点,收到了良好的市场反馈。

TongLINK/Q的产品的可靠性和稳定性也经历了市场10多年的考验,表现了骄人的成绩。在金融、电信、交通、电力等各个领域,TongLINK/Q都拥有大量的应用案例。比如中国人民银行中的全国支票影像交换系统中全面采用了东方通科技的TongLINK/Q产品,实现了支票在全国范围的互通使用,目前该系统运行稳定,全国支票使用量逐步增加。这充分证明了TongLINK/Q对于大规模应用的适应能力。

1:ActiveMQ尽量少的建立连接,多次发送可以共用一个连接。如果每次都建立连接进行发送那么它和MSMQ没有可比性,即MSMQ性能远远高于ActiveMQ。但是如果减少连接申请那么它性能原高于MSMQ。

2:ActiveMQ的消息容量远高于MSMQ

3:ActiveMQ在发送和接收同步的时候效率最高

4:ActiveMQ在大容量(百万级别)表现更高的性能 5:ActiveMQ更灵活的操控和扩展

下面各个章节分别详细介绍各个MQ产品

待续...

时间: 2024-09-30 09:02:58

柯南君:看大数据时代下的IT架构(1)业界消息队列对比的相关文章

柯南君:看大数据时代下的IT架构(5)消息队列之RabbitMQ--案例(Work Queues起航)

一.回顾 让我们回顾一下,在上几章里都讲了什么?总结如下: <柯南君:看大数据时代下的IT架构(1)业界消息队列对比> <柯南君:看大数据时代下的IT架构(2)消息队列之RabbitMQ-基础概念详细介绍> <柯南君:看大数据时代下的IT架构(3)消息队列之RabbitMQ-安装.配置与监控> <柯南君:看大数据时代下的IT架构(4)消息队列之RabbitMQ--案例(Helloword起航)> 二.Work Queues(using the Java Cl

柯南君:看大数据时代下的IT架构(6)消息队列之RabbitMQ--案例(Publish/Subscribe起航)

一.回顾 让我们回顾一下,在上几章里都讲了什么?总结如下: <柯南君:看大数据时代下的IT架构(1)业界消息队列对比> <柯南君:看大数据时代下的IT架构(2)消息队列之RabbitMQ-基础概念详细介绍> <柯南君:看大数据时代下的IT架构(3)消息队列之RabbitMQ-安装.配置与监控> <柯南君:看大数据时代下的IT架构(4)消息队列之RabbitMQ--案例(Helloword起航)> <柯南君:看大数据时代下的IT架构(5)消息队列之Rab

柯南君:看大数据时代下的IT架构(4)消息队列之RabbitMQ--案例(Helloword起航)

一.回顾 让我们回顾一下,在上几章里都讲了什么?总结如下: <柯南君:看大数据时代下的IT架构(1)业界消息队列对比> <柯南君:看大数据时代下的IT架构(2)消息队列之RabbitMQ-基础概念详细介绍> <柯南君:看大数据时代下的IT架构(3)消息队列之RabbitMQ-安装.配置与监控> 二.起航 本章节,柯南君将从几个层面,用官网例子讲解一下RabbitMQ的实操经典程序案例,让大家重新回到经典"Hello world!"(The simpl

柯南君:看大数据时代下的IT架构(3)消息队列之RabbitMQ-安装、配置与监控

柯南君上一章<看大数据时代下的IT架构(2)消息队列之RabbitMQ-基础概念详细介绍>中,粗略的讲了一下,目前消息队列的几种常见产品的优劣对比,接下来的几章节会分别详细阐述,本章介绍RabbitMQ,好吧,废话少说,正式开始: 一.安装 1.安装Erlang 1)系统编译环境(这里采用linux/unix 环境) ① 安装环境 虚拟机:VMware? Workstation 10.0.1 build Linux系统:CentOS6.5 rabbitMQ官网下载:http://www.rab

柯南君:看大数据时代下的IT架构(2)消息队列之RabbitMQ-基础概念详细介绍

柯南君上一章<柯南君:看大数据时代下的IT架构(1)业界消息队列对比 >中,粗略的讲了一下,目前消息队列的几种常见产品的优劣对比,接下来的几章节会分别详细阐述,本章介绍RabbitMQ,好吧,废话少说,正式开始: 一.基础概念详细介绍 1.引言 你是否遇到过两个(多个)系统间需要通过定时任务来同步某些数据?你是否在为异构系统的不同进程间相互调用.通讯的问题而苦恼.挣扎?如果是,那么恭喜你,消息服务让你可以很轻松地解决这些问题. 消息服务擅长于解决多系统.异构系统间的数据交换(消息通知/通讯)问

看大数据时代下的IT架构(1)业界消息队列对比

一.MQ(Message Queue) 即消息队列,一般用于应用系统解耦.消息异步分发,能够提高系统吞吐量.MQ的产品有很多,有开源的,也有闭源,比如ZeroMQ.RabbitMQ.ActiveMQ.Kafka/Jafka.Kestrel.Beanstalkd.HornetQ.Apache Qpid.Sparrow.Starling.Amazon SQS.MSMQ等,甚至Redis也可以用来构造消息队列.至于如何取舍,取决于你的需求. 由于工作需要和兴趣爱好,曾经写过关于RabbitMQ的系列博

看大数据时代下的IT架构(1)图片服务器之演进史

        柯南君的公司最近产品即将上线,由于产品业务对图片的需求与日俱增,花样百出,与此同时,在大数据时代,大流量的冲击下,对图片服务器的压力可想而知,那么今天,柯南君结合互联网的相关热文,加上自己的一点实践经验,与君探讨,与君共勉! 一.图片服务器的重要性 当前,不管哪一家网站(包括 电商行业.O2O行业.互联网行业等),不管哪一种渠道 (包括 web端,APP端甚至一些SNS应用),在大数据时代下,在内容为王的前提下,对图片的需求量越来越大,柯南君的公司是一家O2O公司,也不例外,图片

柯南君:看大数据时代下的IT架构(9)消息队列之RabbitMQ--案例(RPC起航)

二.Remote procedure call (RPC)(using the Java client) 三.Client interface(客户端接口) 为了展示一个RPC服务是如何使用的,我们将创建一段很简单的客户端class. 它将会向外提供名字为call的函数,这个call会发送RPC请求并且阻塞,直到收到RPC运算的结果.代码如下: fibonacci_rpc = FibonacciRpcClient() result = fibonacci_rpc.call(4) print "f

柯南君:看大数据时代下的IT架构(7)消息队列之RabbitMQ--案例(routing 起航)

二.Routing(路由) (using the Java client) 在前面的学习中,构建了一个简单的日志记录系统,能够广播所有的日志给多个接收者,在该部分学习中,将添加一个新的特点,就是可以只订阅一个特定的消息源,也就是说能够直接把关键的错误日志消息发送到日志文件保存起来,不重要的日志信息文件不保存在磁盘中,但是仍然能够在控制台输出,那么这便是我们这部分要学习的消息的路由分发机制. 三.Bindings(绑定) 在前面的学习中已经创建了绑定(bindings),代码如下: channel