mongodb 文本索引

启用文本搜索:

最初文本搜索是一个实验性功能,但2.6版本开始,配置是默认启用的。但是,如果使用的是以前 MongoDB 的版本,那么必须启用文本搜索,使用下面的代码:

>db.adminCommand({setParameter:true,textSearchEnabled:true})

创建文本索引:

考虑下文字后其标签的帖子集合,包含以下文件:

{
   "post_text": "enjoy the mongodb articles on yiibai",
   "tags": [
      "mongodb",
      "yiibai"
   ]
}

我们将创建post_text字段的文本索引,以便我们能够在我们的帖子中搜索文本:

>db.posts.ensureIndex({post_text:"text"})

使用文本索引:

现在,我们已经创建文本post_text字段的索引,我们将搜索所有含有 yiibai.com 一词的帖子。

>db.posts.find({$text:{$search:"yiibai.com"}})

上面的命令返回在文本中含有yiibai单词的帖子,如以下结果文档:

{
   "_id" : ObjectId("53493d14d852429c10000002"),
   "post_text" : "enjoy the mongodb articles on yiibai.com",
   "tags" : [ "mongodb", "yiibai.com" ]
}
{
   "_id" : ObjectId("53493d1fd852429c10000003"),
   "post_text" : "writing tutorials on mongodb",
   "tags" : [ "mongodb", "tutorial" ]
}

如果使用的是旧版本的MongoDB,必须使用下面命令:

>db.posts.runCommand("text",{search:" yiibai.com "})

使用文本搜索比普通搜索的搜索效率有极大的提高。

删除文本索引:

要删除现有的文本索引,使用下面的查询首先找到索引的名称:

>db.posts.getIndexes()

从上面查询得到索引的名称后,运行以下命令。这里,post_text_text是索引的名称。

>db.posts.dropIndex("post_text_text")
时间: 2024-11-08 20:38:54

mongodb 文本索引的相关文章

MongoDB 学习笔记之 TTL索引,部分索引和文本索引

TTL索引: TTL集合支持mongodb对存储的数据进行失效时间设置,经过指定的时间段后.或在指定的时间点过期,集合自动被mongod清除.这一特性有利于对一些只需要保存一定时间的数据信息进行存储,比如机器产生的事件数据.日志.会话信息等. 先创建一个集合TTLCol: 创建TTL索引,60秒过期. 60秒后查询发现数据被删除了. 部分索引: MongoDB部分索引只为那些在一个集合中,满足指定的筛选条件的文档创建索引.由于部分索引是一个集合文档的一个子集,因此部分索引具有较低的存储需求,并降

MongoDB数据库索引

前面的话 索引通常能够极大的提高查询的效率,如果没有索引,MongoDB在读取数据时必须扫描集合中的每个文件并选取那些符合查询条件的记录.这种扫描全集合的查询效率是非常低的,特别在处理大量的数据时,查询可以要花费几十秒甚至几分钟,这对网站的性能是非常致命的.本文将详细介绍MongoDB数据库索引 引入 索引能够提高查询效率,如何体现呢?接下来使用性能分析函数explain()来进行分析说明 首先,插入10万条数据 接着,不创建索引,来寻找time范围在100和200之间的文档 由图中所知,tot

mongodb设置索引和id

ensureIndex() 方法 要创建一个索引,需要使用MongoDB 的ensureIndex()方法. 语法: ensureIndex() 方法的基本语法如下 yiibai.com >db.COLLECTION_NAME.ensureIndex({KEY:1}) 这里关键是要在其中创建索引,1是按升序排列的字段名称.要创建降序索引,需要使用-1. 例子 >db.mycol.ensureIndex({"title":1}) > 在ensureIndex()方法,可

Mongodb的索引

1. 简单介绍 索引是为了加速查询. 假设没有索引,mongodb在查询时会做表扫描,假设集合非常大时,这个查询会非常慢. 一般对创建查询时的键都建立索引. 为排序字段建立索引,假设对未建立索引的字段sort,mongodb会将全部的数据取到内存中来排序, 假设集合大到不能在内存中排序,则mongodb会报错. 2. mongodb创建索引 创建索引使用ensureIndex命令. > db.people.ensureIndex({"username" : 1}); 上面语句对p

【MongoDB学习笔记20】MongoDB的索引

MongoDB的索引和关系型数据库的索引概念和功能是相同的: (1)不使用索引的搜索可以称为全表扫面,也就是说,服务器必须找完整个表才能查询整个结果: (2)建立索引后搜索,查询在索引中搜索,在索引的条目中找到条目以后,就可以直接跳转到目标文档的位置:这样的搜索比全表的搜索的速度要提高好几个数量级: 先向集合blog中添加1000000个文档: > for (i=0;i<1000000;i++){    ... db.users.insert(     ... {"i":i

MongoDB中索引的创建和使用详解

索引通常能够极大的提高查询的效率.在系统中使用查询时,应该考虑建立相关的索引.在MongoDB中创建索引相对比较容易. mongodb中的索引在概念上和大多数关系型数据库如MySQL是一样的.当你在某种情况下需要在MySQL中建立索引,这样的情景同样适合于MongoDB. 基本操作 索引是一种数据结构,他搜集一个集合中文档特定字段的值.MongoDB的查询优化器能够使用这种数据结构来快速的对集合(collection)中的文档(collection)进行寻找和排序.准确来说,这些索引是通过B-T

MongoDB入门学习(四):MongoDB的索引

上一篇讲到了MongoDB的基本操作增删查改,对于查询来说,必须按照我们的查询要求去集合中,并将查找到的结果返回,在这个过程中其实是对整个集合中每个文档进行了扫描,如果满足我们的要求就添加到结果集中最后返回.对于小集合来说,这个过程没什么,但是集合中数据很大的时候,进行表扫描是一个非常恐怖的事情,于是有了索引一说,索引是用来加速查询的,相当于书籍的目录,有了目录可以很精准的定位要查找内容的位置,从而减少无谓的查找. 1.索引的类型 创建索引可以是在单个字段上,也可以是在多个字段上,这个根据自己的

MongoDB索引(一) --- 入门篇:学习使用MongoDB数据库索引

这个系列文章会分为两篇来写: 第一篇:入门篇,学习使用MongoDB数据库索引 第二篇:进阶篇,研究数据库索引原理--B/B+树的基本原理 1. 准备工作 在学习使用MongoDB数据库索引之前,有一些准备工作要做,之后的探索都是基于这些准备工作. 首先需要建立一个数据库和一些集合,这里我就选用一个国内手机号归属地的库,大约32W条记录,数据量不大,不过做一些基本的分析是够了. 首先我们建立一个数据库,叫做db_phone,然后导入测试数据.测试数据就是一些手机号归属地的信息.单个文档长这个样子

关于mongodb创建索引的一些经验总结

想来接触mongodb已经快一年了,对于它的索引知识也积攒了不少经验,趁着这个月黑风高的夜晚,就把mongodb的索引总结一番吧. 一,索引介绍 mongodb具有两类索引,分别为单键索引和复合索引. 1.单键索引是最简单的一种索引,创建单键索引的开销要比复合索引小很多.单键索引主要用于针对单值查询的条件. 2.复合索引是将文档中的几个键联合起来创建的一种索引,创建这种索引需要更多的空间与性能开销.分别体现在: 1).在给大量数据创建复合索引时,会阻塞数据库的查询,更不用说修改和插入操作了: 2