linux的内存管理

http://www.linuxeye.com/Linux/1932.html

linux的内存分为:物理内存和虚拟内存。
物理内存就是系统硬件提供的内存大小,是真正的内存。
虚拟内存:虚拟内存就是为了满足物理内存的不足而提出的策略,它是利用磁盘空间虚拟出的一块逻辑内存,用作虚拟内存的磁盘空间被称为交换空间(Swap Space)。
使用场景:物理内存不足,linux内核将暂时不用的内存数据写入交换空间,则物理内存得到释放;当需要用到那些数据时,则从交换空间读入物理内存。

常用内存监控命令:top free
free

total: 物理内存总大小
used:已经使用的物理内存大小
free:空闲的物理内存大小
shared:多个进程共享的内存大小
buffers/cached:磁盘缓存的大小

Men:代表物理内存使用情况
buffers/cache:代表磁盘缓存使用情况
swap:代表交换空间使用情况。

从内核的角度看内存的状态:
物理内存大小7820M,空闲内存大小824M。已经使用的内存为7820-824=6996M。可用内存824并不包含buffers和cached。
内核完全控制着内存的使用情况,Linux会在需要内存的时候,或在系统运行逐步推进时,将buffers和cached状态的内存变为free状态的内存,以供系统使用。

从应用层的角度看内存的状态:
已经使用4093M,可用空间大小3727M。3727=190+2712+824
应用程序可用的物理内存值是Mem项的free值加上buffers和cached值之和,也就是说,这个free值是包括buffers和cached项大小的,对于应用程序来说,buffers/cached占有的内存是可用的,因为buffers/cached是为了提高文件读取的性能,当应用程序需要用到内存的时候,buffers/cached会很快地被回收,以供应用程序使用。

为了降低磁盘读取数据对时间和资源的消耗,linux引入了buffer/cache机制
buffers与cached都是内存操作,用来保存系统曾经打开过的文件以及文件属性信息,这样当操作系统需要读取某些文件时,会首先在buffers 与cached内存区查找,如果找到,直接读出传送给应用程序,如果没有找到需要数据,才从磁盘读取,这就是操作系统的缓存机制,通过缓存,大大提高了操 作系统的性能。但buffers与cached缓冲的内容却是不同的

buffers主要用来存放目录里面有什么内容,文件的属性以及权限等等。而cached直接用来记忆我们打开过的文件和程序。

时间: 2024-07-29 23:26:58

linux的内存管理的相关文章

玩转Linux之内存管理-free

玩转Linux之内存管理-free free命令可以显示Linux系统中空闲的.已用的物理内存及swap内存,及被内核使用的buffer.在Linux系统监控的工具中,free命令是最经常使用的命令之一.下面给出一个free命令的栗子: 1 [[email protected] ~]# free 2 total used free shared buffers cached 3 Mem: 8062392 2092832 5969560 0 187132 1498832 4 -/+ buffers

Linux内核——内存管理

内存管理 页 内核把物理页作为内存管理的基本单位:内存管理单元(MMU,管理内存并把虚拟地址转换为物理地址)通常以页为单位进行处理.MMU以页大小为单位来管理系统中的页表.从虚拟内存的角度看,页就是最小单位. 32位系统:页大小4KB 64位系统:页大小8KB 在支持4KB页大小并有1GB物理内存的机器上,物理内存会被划分为262144个页.内核用 struct page 结构表示系统中的每个物理页. struct page { page_flags_t flags;   /* 表示页的状态,每

Linux基础-----内存管理

free -m 查看内存大小 Mem:物理内存统计 total 物理内存大小 used  以使用内存(包含buffers;bached) free  空闲内存 shared 共享内存 buffers 缓冲(用于写操作) cached  缓存(用于读操作) -+ buffers/cached used (不包含buffers和cached;实际内存使用量) free  (包含buffers和cached;实际空闲内存) 根据以上分析,可以得出一下结论: 1.  实际可用内存大小: Free= Fr

从一道面试题(死循环里分配内存)阐述Linux的内存管理

题目: int cnt = 0; while(1) { ++cnt; ptr = (char *)malloc(1024*1024*128); if(ptr == NULL) { printf("%s\n", "is null"); break; } } printf("%d\n", cnt); 这个程序会有怎样的输出呢? 结果在Linux32位机是 is null 3057 为嘛是3057?? 因为用户态虚拟内存地址空间是3G. 3057M 大

linux内核 内存管理

以下内容汇总自网络. 在早期的计算机中,程序是直接运行在物理内存上的.换句话说,就是程序在运行的过程中访问的都是物理地址. 如果这个系统只运行一个程序,那么只要这个程序所需的内存不要超过该机器的物理内存就不会出现问题,我们也就不需要考虑内存管理这个麻烦事了,反正就你一个程序,就这么点内存,吃不吃得饱那是你的事情了. 然而现在的系统都是支持多任务,多进程的,这样CPU以及其他硬件的利用率会更高,这个时候我们就要考虑到将系统内有限的物理内存如何及时有效的分配给多个程序了,这个事情本身我们就称之为内存

Linux中内存管理

转载自:http://blog.chinaunix.net/uid-26611383-id-3761754.html 前一段时间看了<深入理解Linux内核>对其中的内存管理部分花了不少时间,但是还是有很多问题不是很清楚,最近又花了一些时间复习了一下,在这里记录下自己的理解和对Linux中内存管理的一些看法和认识. 我比较喜欢搞清楚一个技术本身的发展历程,简而言之就是这个技术是怎么发展而来的,在这个技术之前存在哪些技术,这些技术有哪些特点,为什么会被目前的技术所取代,而目前的技术又解决了之前的

Linux堆内存管理深入分析(下)

 Linux堆内存管理深入分析 (下半部) 作者@走位,阿里聚安全 0 前言回顾 在上一篇文章中(链接见文章底部),详细介绍了堆内存管理中涉及到的基本概念以及相互关系,同时也着重介绍了堆中chunk分配和释放策略中使用到的隐式链表技术.通过前面的介绍,我们知道使用隐式链表来管理内存chunk总会涉及到内存的遍历,效率极低.对此glibc malloc引入了显示链表技术来提高堆内存分配和释放的效率. 所谓的显示链表就是我们在数据结构中常用的链表,而链表本质上就是将一些属性相同的“结点”串联起来,方

Linux堆内存管理深入分析

(上半部) 作者:走位@阿里聚安全 0 前言 近年来,漏洞挖掘越来越火,各种漏洞挖掘.利用的分析文章层出不穷.从大方向来看,主要有基于栈溢出的漏洞利用和基于堆溢出的漏洞利用两种.国内关于栈溢出的资料相对较多,这里就不累述了,但是关于堆溢出的漏洞利用资料就很少了.鄙人以为主要是堆溢出漏洞的门槛较高,需要先吃透相应操作系统的堆内存管理机制,而这部分内容一直是一个难点.因此本系列文章主要从Linux系统堆内存管理机制出发,逐步介绍诸如基本堆溢出漏洞.基于unlink的堆溢出漏洞利用.double fr

浅谈Linux的内存管理机制

转至:http://ixdba.blog.51cto.com/2895551/541355 一 物理内存和虚拟内存          我们知道,直接从物理内存读写数据要比从硬盘读写数据要快的多,因此,我们希望所有数据的读取和写入都在内存完成,而内存是有限的,这样就引出了物理内存与虚拟内存的概念.物理内存就是系统硬件提供的内存大小,是真正的内存,相对于物理内存,在linux下还有一个虚拟内存的概念,虚拟内存就是为了满足物理内存的不足而提出的策略,它是利用磁盘空间虚拟出的一块逻辑内存,用作虚拟内存的

Linux堆内存管理深入分析(上)

Linux堆内存管理深入分析 (上半部) 作者:走位@阿里聚安全 ? 0 前言 近年来,漏洞挖掘越来越火,各种漏洞挖掘.利用的分析文章层出不穷.从大方向来看,主要有基于栈溢出的漏洞利用和基于堆溢出的漏洞利用两种.国内关于栈溢出的资料相对较多,这里就不累述了,但是关于堆溢出的漏洞利用资料就很少了.鄙人以为主要是堆溢出漏洞的门槛较高,需要先吃透相应操作系统的堆内存管理机制,而这部分内容一直是一个难点.因此本系列文章主要从Linux系统堆内存管理机制出发,逐步介绍诸如基本堆溢出漏洞.基于unlink的