How far away ?
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6422 Accepted Submission(s): 2411
Problem Description
There are n houses in the village and some bidirectional roads connecting them. Every day peole always like to ask like this "How far is it if I want to go from house A to house B"? Usually it hard to
answer. But luckily int this village the answer is always unique, since the roads are built in the way that there is a unique simple path("simple" means you can‘t visit a place twice) between every two houses. Yout task is to answer all these curious people.
Input
First line is a single integer T(T<=10), indicating the number of test cases.
For each test case,in the first line there are two numbers n(2<=n<=40000) and m (1<=m<=200),the number of houses and the number of queries. The following n-1 lines each consisting three numbers i,j,k, separated bu a single space, meaning that there is a road
connecting house i and house j,with length k(0<k<=40000).The houses are labeled from 1 to n.
Next m lines each has distinct integers i and j, you areato answer the distance between house i and house j.
Output
For each test case,output m lines. Each line represents the answer of the query. Output a bland line after each test case.
Sample Input
2 3 2 1 2 10 3 1 15 1 2 2 3 2 2 1 2 100 1 2 2 1
Sample Output
10 25 100 100
Source
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586
题目大意:给一个带权树,m次询问,求两点之间的距离
题目分析:裸的LCA问题,采用离线的Tarjan算法
#include <cstdio> #include <cstring> int const MAX = 40005; struct Edge { int id, val; //当前边序号,边权 int next; //下一条 }e[2 * MAX]; int n, m, cnt; //x, y表示询问的起点和终点,z是x和y的LCA int x[MAX], y[MAX], z[MAX]; //fa存祖先,dist存到根的距离,pre存父亲 int fa[MAX], dist[MAX], pre[MAX]; bool vis[MAX]; void AddEdge(int u, int v, int w) { e[cnt].id = u; e[cnt].val = w; e[cnt].next = pre[v]; pre[v] = cnt++; e[cnt].id = v; e[cnt].val = w; e[cnt].next = pre[u]; pre[u] = cnt++; } int Find(int x) { return x == fa[x] ? x : fa[x] = Find(fa[x]); } void tarjan(int k) { vis[k] = true; fa[k] = k; for(int i = 1; i <= m; i++) { if(x[i] == k && vis[y[i]]) z[i] = Find(y[i]); if(y[i] == k && vis[x[i]]) z[i] = Find(x[i]); } for(int i = pre[k]; i != -1; i = e[i].next) { if(!vis[e[i].id]) { dist[e[i].id] = dist[k] + e[i].val; tarjan(e[i].id); fa[e[i].id] = k; } } } int main() { int T; scanf("%d",&T); while(T--) { int u, v, w; scanf("%d %d", &n, &m); cnt = 0; memset(pre, -1, sizeof(pre)); for(int i = 1; i < n; i++) { scanf("%d %d %d", &u, &v, &w); AddEdge(u, v, w); } for(int i = 1; i <= n; i++) x[i] = y[i] = z[i] = 0; for(int i = 1; i <= m; i++) { scanf("%d %d", &u, &v); x[i] = u; y[i] = v; } memset(vis, false, sizeof(vis)); dist[1] = 0; tarjan(1); for(int i = 1; i <= m; i++) printf("%d\n",dist[x[i]] + dist[y[i]] - 2 * dist[z[i]]); } }