lines
Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 620 Accepted Submission(s): 288
Problem Description
John has several lines. The lines are covered on the X axis. Let A is a point which is covered by the most lines. John wants to know how many lines cover A.
Input
The first line contains a single integer T(1≤T≤100)(the
data for N>100 less
than 11 cases),indicating the number of test cases.
Each test case begins with an integer N(1≤N≤105),indicating
the number of lines.
Next N lines contains two integers Xi and Yi(1≤Xi≤Yi≤109),describing
a line.
Output
For each case, output an integer means how many lines cover A.
Sample Input
2 5 1 2 2 2 2 4 3 4 5 1000 5 1 1 2 2 3 3 4 4 5 5
Sample Output
3 1
题意就是求区间的最大值的,可以用线段树+离散化处理,使得坐标区间变小。
如[2,5],[3, 100]离散化后,先排序{2,3,5,100},对应下标值可以变为{1,2,3,4} ,对应时可以去重(见代码)。
区间变为[1,3],[2,4],区间的大小关系不变。
#include<stdio.h> #include<math.h> #include<string.h> #include<stdlib.h> #include<algorithm> using namespace std; #define N 200005 #define ll __int64 struct node { int l,r; int v,f; //v记录最大值,f记录当前层累积的值 }f[N*3]; struct st //记录原始区间的左右端点 { int x,id; }a[N]; int pos[N/2][2]; //记录区间端点 bool cmp(st a,st b) { return a.x<b.x; } void creat(int t,int l,int r) { f[t].l=l; f[t].r=r; f[t].v=f[t].f=0; if(l==r) return ; int tmp=t<<1,mid=(l+r)>>1; creat(tmp,l,mid); creat(tmp|1,mid+1,r); } void update(int t,int l,int r) { int tmp=t<<1,mid=(f[t].l+f[t].r)>>1; if(f[t].l==l&&f[t].r==r) { f[t].v++; f[t].f++; return ; } if(f[t].f) //下压操作push_down,每次加上累计值 { f[tmp].v+=f[t].f; f[tmp|1].v+=f[t].f; f[tmp].f+=f[t].f; f[tmp|1].f+=f[t].f; f[t].f=0; //标记值f置为零 } if(r<=mid) update(tmp,l,r); else if(l>mid) update(tmp|1,l,r); else { update(tmp,l,mid); update(tmp|1,mid+1,r); } f[t].v=max(f[tmp].v,f[tmp|1].v); //上压操作push_up } int main() { int T,i,n; scanf("%d",&T); while(T--) { scanf("%d",&n); for(i=0;i<n;i++) { scanf("%d%d",&pos[i][0],&pos[i][1]); a[i*2].x=pos[i][0]; a[i*2].id=-(i+1); //记录下标,负值为起点,正值为终点 a[i*2+1].x=pos[i][1]; a[i*2+1].id=i+1; } sort(a,a+n*2,cmp); int t=1,x=a[0].x; //t为重新赋给区间的坐标值 for(i=0;i<n*2;i++) { if(x!=a[i].x) //可以达到去除重复值的效果 { t++; x=a[i].x; } if(a[i].id<0) pos[-1*a[i].id-1][0]=t; else pos[a[i].id-1][1]=t; } creat(1,1,n*2); for(i=0;i<n;i++) { update(1,pos[i][0],pos[i][1]); } printf("%d\n",f[1].v); } return 0; }