POJ 3280 Cheapest Palindrome DP题解

看到Palindrome的题目,首先想到的应该是中心问题,然后从中心出发,思考如何解决。

DP问题一般是从更加小的问题转化到更加大的问题,然后是从地往上 bottom up地计算答案的。

能得出状态转移方程就好办了,本题的状态转移方程是:

if (cowID[i] == cow{j]) tbl[id][i] = tbl[id][i+1];//相等的时候无需改动

else tbl[id][i] = min(tbl[!id][i+1] + cost[cowID[i]-‘a‘], tbl[!id][i] + cost[cowID[j]-‘a‘]);//不相等的时候需要看改动那一边的字符比较划算

注意:

1 cost的删除和插入对于DP来说实际是一样的操作,所以只需要报出一个最小的cost就可以了

2 cost的值是以字母为下标保存值的,不是按顺序给出的,也可能某些字母的值没有给出,这个时候默认应该为零

最后是需要节省内存,这些题目一般可以只看一维dp table数组就可以了,这个时候要二维转化为一维保存结果,实际测试内存节省非常多。

这里使用所谓的滚动数组,轮流使用两个数组记录数据。

主要把二维表的斜对角格转为一个数组保存,对应好下标就可以了。

#include <stdio.h>
#include <string.h>

const int MAX_M = 2001;
const int MAX_N = 26;
char cowID[MAX_M];
int cost[MAX_N];//minimum of the cost of adding and deleting that character.
int tbl[2][MAX_M];
int N, M;

inline int min(int a, int b) { return a < b ? a : b; }

int getMinCost()
{
	memset(tbl[0], 0, sizeof(int)*M);
	memset(tbl[1], 0, sizeof(int)*M);
	bool id = false;
	for (int d = 2; d <= M; d++)
	{
		id = !id;
		for (int i = 0, j = d-1; j < M; i++, j++)
		{
			if (cowID[i] == cowID[j]) tbl[id][i] = tbl[id][i+1];
			else
			{
				int c1 = tbl[!id][i+1] + cost[cowID[i]-'a'];
				int c2 = tbl[!id][i] + cost[cowID[j]-'a'];
				tbl[id][i] = min(c1, c2);
			}
		}
	}
	return tbl[id][0];
}

int main()
{
	char a;
	int c1, c2;
	while (scanf("%d %d", &N, &M) != EOF)
	{
		memset(cost, 0, sizeof(int)*N);
		getchar(); gets(cowID);
		for (int i = 0; i < N; i++)
		{
			a = getchar();
			scanf("%d %d", &c1, &c2);
			cost[a-'a'] = min(c1, c2);//only need to save the minimum
			getchar();
		}
		printf("%d\n", getMinCost());
	}
	return 0;
}

POJ 3280 Cheapest Palindrome DP题解,布布扣,bubuko.com

时间: 2024-12-29 01:26:06

POJ 3280 Cheapest Palindrome DP题解的相关文章

POJ 3280 Cheapest Palindrome 动态规划法题解

Description Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each cow an electronic ID tag that the system will read as the cows pass by a scanner. Each ID tag's contents are

poj 3280 Cheapest Palindrome DP

题意:给你一个m位的字符串,其中的字符是给定的n个小写字母之一,然后再字符串中添加或删除这字母的代价 不一样.求在添加删除操作之后的字符串成为回文串的最小代价. 思路:考虑d[i][j]为字符串i到j成为回文串的最小代价. 如Xx.....yY,如果X == Y,显然d[i][j] = d[i+1][j-1]; 如果X != Y,那么有4种方案:删除X,在Y后面添加一个X,删除Y,在X前面添加Y.从而转移方程可以写成 d[i][j] = min(d[i+1][j]+del[s[i]-'a'],

POJ 3280 Cheapest Palindrome(DP)

题目链接 题意 :给你一个字符串,让你删除或添加某些字母让这个字符串变成回文串,删除或添加某个字母要付出相应的代价,问你变成回文所需要的最小的代价是多少. 思路 :DP[i][j]代表的是 i 到 j 这一段位置变成回文所需的最小的代价. 1 //3280 2 #include <stdio.h> 3 #include <string.h> 4 #include <iostream> 5 6 using namespace std ; 7 8 char sh[2100]

[poj]3280 Cheapest Palindrome 题解

[poj]3280 Cheapest Palindrome 区间dp 题意: 给你长度为m的字符串,其中有n种字符,每种字符都有两个值,分别是插入这个字符的代价,删除这个字符的代价,让你求将原先给出的那串字符变成一个回文串的最小代价. M<=2000 设 dp[i][j] 为区间 i~j 的回文串的最小代价 现在考虑怎样从别的状态转移到 区间i~j 三种情况 首先 str[i]==str[j] 那么 dp[i][j] = dp[i+1][j-1] 其次 (i+1)~j 是一个回文串 dp[i][

POJ 3280 Cheapest Palindrome(区间DP)

 Cheapest Palindrome Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6894   Accepted: 3344 Description Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each co

poj 3280 Cheapest Palindrome(区间DP)

Cheapest Palindrome Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 5995   Accepted: 2922 Description Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each cow a

POJ 3280 Cheapest Palindrome(区间DP求改成回文串的最小花费)

题目链接:http://poj.org/problem?id=3280 题目大意:给你一个字符串,你可以删除或者增加任意字符,对应有相应的花费,让你通过这些操作使得字符串变为回文串,求最小花费.解题思路:比较简单的区间DP,令dp[i][j]表示使[i,j]回文的最小花费.则得到状态转移方程: dp[i][j]=min(dp[i][j],min(add[str[i]-'a'],del[str[i]-'a'])+dp[i+1][j]); dp[i][j]=min(dp[i][j],min(add[

(中等) POJ 3280 Cheapest Palindrome,DP。

Description Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each cow an electronic ID tag that the system will read as the cows pass by a scanner. Each ID tag's contents are

POJ 3280 Cheapest Palindrome (DP)

 Description Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each cow an electronic ID tag that the system will read as the cows pass by a scanner. Each ID tag's contents