优化机器学习算法

在机器学习的应用背景是多种多样的,做实际工程必须学会如何根据 具体的问题评估一个学习模型的好坏,如何合理地选择模型、提取特征,如何进行参数调优。这些也是我以前做模式识别时欠缺的环节,所以在遇到识别率很低的情 况时,往往很困惑,不知道该如何改进:到底是应该改进模型改变特征、还是应该增加训练样本数量,到底是应该优化迭代算法,还是应该改变目标函数。通过学习 Learning Theory可以得到一些指导性的结论。

首先,是bias-variance trade off问题。

bias-variance trade off的过程实际上就是模型选择和特征选择的过程,对于模型选择,最实用的办法就是进行交叉验证,得到Test Error最小的模型;对于特征选择,可采用前向选择或后向选择的方法选择好的特征,删除不好的特征,或者采用滤波的方法,计算每个特征xi与y的互信息 量,取互信息量较大的那个特征。

bias-variance trade off的目的是寻找训练误差和推广能力的平衡。

怎样优化学习算法? 首先判别是high bias问题还是high variance问题,判断的方法有两个:一、test error大则是high variance问题、 training error大则是high bias问题;二、增加训练样本数量,看两类error的变化趋势,test error变小,则是high variance问题。增加训练样本数量,减少特征数量可以解决high variance问题,增加特征数量可以解决high bias问题。

优化机器学习算法,布布扣,bubuko.com

时间: 2024-10-17 07:18:15

优化机器学习算法的相关文章

机器学习公开课笔记第五周之优化机器学习算法

一,提高机器学习算法准确度的方法 当我们的机器学习算法不能准确预测我们测试数据时,我们可以尝试通过以下方法提高我们机器学习的算法准确度 1),获得更多的训练样例 2),减少特征数 3),增加特征数 4),增加多项式特征 5),增大或减小\(\lambda\) 二,评估机器学习模型 如果只是单独的使用一个训练集,我们并不能很好的评估机该器学习的算法到底准不准确,因为有可能是过度拟合(Overfitting),我们可以通过把测试集分成两个数据集 取70%作为训练集,30%作为测试集 1),用训练集来

机器学习算法(优化)之一:梯度下降算法、随机梯度下降(应用于线性回归、Logistic回归等等)

本文介绍了机器学习中基本的优化算法-梯度下降算法和随机梯度下降算法,以及实际应用到线性回归.Logistic回归.矩阵分解推荐算法等ML中. 梯度下降算法基本公式 常见的符号说明和损失函数 X :所有样本的特征向量组成的矩阵 x(i) 是第i个样本包含的所有特征组成的向量x(i)=(x(i)1,x(i)2...,x(i)n) y(i) 第i个样本的label,每个样本只有一个label,y(i)是标量(一个数值) hθ(x(i)) :拟合函数,机器学习中可以用多种类型的拟合函数 θ 是函数变量,

机器学习系列(9)_机器学习算法一览(附Python和R代码)

本文资源翻译@酒酒Angie:伊利诺伊大学香槟分校统计学同学,大四在读,即将开始计算机的研究生学习.希望认识更多喜欢大数据和机器学习的朋友,互相交流学习. 内容校正调整:寒小阳 && 龙心尘 时间:2016年4月 出处:http://blog.csdn.net/han_xiaoyang/article/details/51191386 http://blog.csdn.net/longxinchen_ml/article/details/51192086 声明:版权所有,转载请联系作者并注

机器学习算法总结--SVM

简介 SVM是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,即支持向量机的学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解.或者简单的可以理解为就是在高维空间中寻找一个合理的超平面将数据点分隔开来,其中涉及到非线性数据到高维的映射以达到数据线性可分的目的. 训练数据线性可分时,通过硬间隔最大化,学习一个线性分类器,即线性可分支持向量机,又称为硬间隔支持向量机:训练数据近似线性可分时,通过软间隔最大化,也学习一个线性分类器,即线性支持向量机,也称为软间隔支持向量机

【转】常见面试之机器学习算法思想简单梳理

转:http://www.chinakdd.com/article-oyU85v018dQL0Iu.html 前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考虑该岗位,毕竟在机器智能没达到人类水平之前,机器学习可以作为一种重要手段,而随着科技的不断发展,相信这方面的人才需求也会越来越大. 纵观IT行业的招聘岗位,机器学习之类的岗位还是挺少的,国内

机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理)

http://www.cnblogs.com/tornadomeet/p/3395593.html 机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理) 前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考虑该岗位,毕竟在机器智能没达到人类水平之前,机器学习可以作为一种重要手段,而随着科技的不断发展,相信这方面的人才需求也会越来越大.

8种常见机器学习算法比较

机器学习算法太多了,分类.回归.聚类.推荐.图像识别领域等等,要想找到一个合适算法真的不容易,所以在实际应用中,我们一般都是采用启发式学习方式来实验.通常最开始我们都会选择大家普遍认同的算法,诸如SVM,GBDT,Adaboost,现在深度学习很火热,神经网络也是一个不错的选择.假如你在乎精度(accuracy)的话,最好的方法就是通过交叉验证(cross-validation)对各个算法一个个地进行测试,进行比较,然后调整参数确保每个算法达到最优解,最后选择最好的一个.但是如果你只是在寻找一个

常见面试之机器学习算法思想简单梳理

http://www.cnblogs.com/tornadomeet/p/3395593.html (转) 前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考虑该岗位,毕竟在机器智能没达到人类水平之前,机器学习可以作为一种重要手段,而随着科技的不断发展,相信这方面的人才需求也会越来越大. 纵观IT行业的招聘岗位,机器学习之类的岗位还是挺少的,国内大

机器学习算法中如何选取超参数:学习速率、正则项系数、minibatch size

机器学习算法中如何选取超参数:学习速率.正则项系数.minibatch size 本文是<Neural networks and deep learning>概览 中第三章的一部分,讲机器学习算法中,如何选取初始的超参数的值.(本文会不断补充) 学习速率(learning rate,η) 运用梯度下降算法进行优化时,权重的更新规则中,在梯度项前会乘以一个系数,这个系数就叫学习速率η.下面讨论在训练时选取η的策略. 固定的学习速率.如果学习速率太小,则会使收敛过慢,如果学习速率太大,则会导致代价