[TJOI2015] 概率论 - Catalan数

一棵随机生成的 \(n\) 个结点的有根二叉树(所有互相不同构的形态等概率出现)的叶子节点数的期望。\(n \leq 10^9\)

Solution

\(n\) 个点的二叉树个数即 Catalan 数 \(f(n)=\frac{C_{2n}^n}{n+1}\)

设 \(g(n)\) 为 \(n\) 个点的所有二叉树的叶子个数和,找规律得 \(g(n)=nf(n-1)\)

Proof. 对于 \(n\) 个点,\(k\) 个叶子的二叉树,删掉任意一个叶子可以得到 \(k\) 个 \(n-1\) 个点的二叉树,这些二叉树每个有 \(n\) 个位置可以挂一个新的叶子

所求为
\[
\frac{g_n}{f_n}=\frac{nf_{n-1}}{f_n}=\frac{n(n+1)}{2(2n-1)}
\]

#include <bits/stdc++.h>
using namespace std;
double n;
signed main() {
    cin>>n;
    printf("%.10lf\n",n*(n+1)/2/(2*n-1));
}

原文地址:https://www.cnblogs.com/mollnn/p/12363942.html

时间: 2024-10-08 20:13:32

[TJOI2015] 概率论 - Catalan数的相关文章

[TJOI2015]概率论[卡特兰数]

题意 \(n\) 个节点二叉树的叶子节点的期望个数. \(n\leq 10^9\) . 分析 实际询问可以转化为 \(n\) 个点的不同形态的二叉树的叶子节点总数. 定义 \(f_n\) 表示 \(n\) 个节点的二叉树的个数, \(g_n\) 表示 \(n\) 个节点的不同形态的二叉树的叶子节点总数. 设一棵 \(n\) 个节点的树有 \(m\) 个叶子节点,每删去一个叶子节点都可以得到一棵大小为 \(n-1\) 的二叉树,考虑每个大小为 \(n-1\) 的二叉树,共有 \(n\) 个叶子节点

Catalan数

[问题描述]对于一个栈,已知元素的进栈序列,判断一个由栈中所有元素组成的排列的出栈序列. 有N个数,则代表入栈序列为1,2,3,4,5...,N.求所有可能的出栈序列和总数. 代码如下 #include<iostream> #include<vector> #include<algorithm> #include<string> #include<stdio.h> using namespace std; int N = -1; int sum

UVA 10312 - Expression Bracketing(数论+Catalan数)

题目链接:option=com_onlinejudge&Itemid=8&page=show_problem&problem=1253">10312 - Expression Bracketing 题意:有n个x,要求分括号,推断非二叉表达式的个数. 思路:二叉表达式的计算方法就等于是Catalan数的,那么仅仅要计算出总数,用总数减去二叉表达式个数.得到的就是非二叉表达式的个数. 那么计算方法是什么呢. 看题目中的图,对于n = 4的情况,能够分为这几种情况来讨论

UVA10303 - How Many Trees?(java大数+catalan数)

UVA10303 - How Many Trees?(java大数+catalan数) 题目链接 题目大意:给你1-N N个数,然后要求由这些数构成二叉搜索树,问有多少种这样的二叉搜索树. 解题思路:把前5项理出来,正好是1 2 5 14 42..就猜想是catalan数,结果也是对了.公式f(i + 1) = (4?i - 6)/ i; (i >= 2).结果很大,要用高精度. 代码: import java.util.*; import java.math.*; import java.io

【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】

Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到Catalan数,但是我却花了两个小时去找递推式. 首先 Catalan数 : 基本规律:1,2,5,14,42,132,.......... 典型例题: 1.多边形分割.一个多边形分为若干个三角形有多少种分法. C(n)=∑(i=2...n-1)C(i)*C(n-i+1) 2.排队问题:转化为n个人

【catalan数】10076 - 凸多边形分割

[catalan数]10076 - 凸多边形分割 Time Limit: 1000MS Memory Limit: 32768KB 这题不能用通项公式 我忘记了mod不支持除法 我忘记了mod不支持除法 1 # include<cstdio> 2 # include<iostream> 3 using namespace std; 4 const int maxn=250; 5 typedef unsigned long long LL; 6 LL f[maxn]; 7 int m

Catalan数——卡特兰数

一.Catalan数的定义 令h(0)=1,h(1)=1,Catalan数满足递归式:h(n) = h(0)*h(n-1) + h(1)*h(n-2) + ... + h(n-1)*h(0)  (n>=2) 该递推关系的解为:h(n) = C(2n,n)/(n+1),n=0,1,2,3,... (其中C(2n,n)表示2n个物品中取n个的组合数) 二.问题描述 12个高矮不同的人,排成两排,每排必须是从矮到高排列,而且第二排比对应的第一排的人高,问排列方式有多少种? 问题分析: 我们先把这12个

HDU 4828 - Grids (Catalan数)

题目链接 : http://acm.hdu.edu.cn/showproblem.php?pid=4828 Catalan数的公式为 C[n+1] = C[n] * (4 * n + 2) / (n + 2) 题目要求对M = 1e9+7 取模 利用乘法逆元将原式中除以(n+2)取模变为对(n+2)逆元的乘法取模 C[n+1] = C[n] * (4 * n + 2) * Pow(n+2, MOD-2) % MOD 其中Pow用快速幂解决 #include <cstdio> #include

关于Catalan数

问题的由来:编号为 1 到 n 的 n 个元素,顺序的进入一个栈,则可能的出栈序列有多少种? 对问题的转化与思考:n 个元素进栈和出栈,总共要经历 n 次进栈和 n 次出栈.这就相当于对这 2n 步操作进行排列.问题等价于:n个1和n个0组成一2n位的2进制数,要求从左到右扫描,1的累计数不小于0的累计数,试求满足这条件的数有多少? 解答: 设P2n为这样所得的数的个数. 在2n位上填入n个1的方案数为 C(n 2n)不填1的其余n位自动填以数0.从C(n 2n)中减去不符合要求的方案数即为所求