【ML-13-4】隐马尔科夫模型HMM--预测问题Viterbi(维特比)算法

【ML-13-1】隐马尔科夫模型HMM

【ML-13-2】隐马尔科夫模型HMM--前向后向算法

【ML-13-3】隐马尔科夫模型HMM--Baum-Welch(鲍姆-韦尔奇)

【ML-13-4】隐马尔科夫模型HMM--预测问题Viterbi(维特比)算法

目录

  1. 基础--HMM常用概率的计算
  2. HMM最可能隐藏状态序列近似算法
  3. Viterbi(维特比)算法
  4. Viterbi(维特比)算法举例

HMM模型最后一个问题的求解:求给定观测序列条件下,最可能出现的对应的隐藏状态序列。即给定模型λ=(A,B,π)和观测序列Q={q1,q2,...,qT},求给定观测序列条件概率P(I|Q,λ)最大的隐含状态序列 I。在阅读本篇前,建议先阅读这个系列的第一篇以熟悉HMM模型。

HMM模型的解码问题最常用的算法是维特比Viterbi(维特比)算法,当然也有其他的算法可以求解这个问题。同时维特比算法是一个通用的求序列最短路径的动态规划算法,也可以用于很多其他问题,比如文本挖掘的分词原理中单独用维特比算法来做分词。

  本文关注于用维特比算法来解码HMM的的最可能隐藏状态序列。

一、基础--HMM常用概率的计算

 利用前向概率和后向概率,我们可以计算出HMM中单个状态和两个状态的概率公式。

1.1 单个状态的概率

求给定模型λ和观测序列Q的情况下,在时刻t处于状态si的概率,记做:

单个状态概率的意义主要是用于判断在每个时刻最可能存在的状态,从而可以得到一个状态序列作为最终的预测结果。

利用前向概率和后向概率的定义可知:

由上面两个表达式可知:

1.2 两个状态的联合概率

求给定模型λ和观测序列Q的情况下,在时刻t处于状态si并时刻t+1处于状态sj概率,记做:

1.3 上述两种求和可以得到:

二、HMM最可能隐藏状态序列近似算法  

在HMM模型的解码问题中,给定模型λ=(A,B,Π)和观测序列,求给定观测序列Q条件下,最可能出现的对应的状态序列I={i1,i2,...iT},即P(I|Q)要最大化。直接在每个时刻t时候最优可能的状态作为最终的预测状态,使用下列公式计算概率值:

只要求得满足使得上式概率最大的值,可以通过前向和后向求得。

近似算法很简单,但是却不能保证预测的状态序列是整体是最可能的状态序列,因为预测的状态序列中某些相邻的隐藏状态可能存在转移概率为0的情况。

  而维特比算法可以将HMM的状态序列作为一个整体来考虑,避免近似算法的问题,下面我们来看看维特比算法进行HMM解码的方法。

三、Viterbi(维特比)算法

Viterbi算法实际是用动态规划的思路求解HMM预测问题,求出概率最大的"路径",每条"路径"对应一个状态序列:

时刻t隐藏状态为i所有可能的状态转移路径i1,i2,...it中的概率最大值。记为δt(i):

由δt(i)的定义可以得到δ的递推表达式:

计算时刻T最大的δT(i),即为最可能隐藏状态序列出现的概率。

使得上式最大后,最终得到最有可能的隐藏状态序列I∗={i∗1,i∗2,...i∗T}

四、Viterbi(维特比)算法举例

4.1 例题

假设有三个盒子,编号为1,2,3;每个盒子都装有黑白两种颜色的小球,球的比例如下:

按照下列规则的方式进行有放回的抽取小球,得到球颜色的观测序列:

  1. 按照π的概率选择一个盒子,从盒子中随机抽取出一个小球,记录颜色后,放回盒子中;
  2. 按照某种条件概率选择新的盒子,重复该操作;
  3. 最终得到观测序列:"白黑白白黑
  • 状态集合:S={盒子1,盒子2,盒子3}
  • 观测集合:O={白,黑}
  • 状态序列和观测序列的长度T=5
  • 初始概率分布π
  • 状态转移概率矩阵A
  • 观测概率矩阵B

在给定参数π、A、B的时候,得到观测序列为"白黑白白黑",求出最优的隐藏状态序列。

4.2 计算过程

最终盒子序列为: (2, 3, 2, 2, 3)

附件一:手写练习

原文地址:https://www.cnblogs.com/yifanrensheng/p/12684738.html

时间: 2024-09-28 18:51:48

【ML-13-4】隐马尔科夫模型HMM--预测问题Viterbi(维特比)算法的相关文章

隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数

隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列(TODO) 在本篇我们会讨论HMM模型参数求解的问题,这个问题在HMM三个问题里算是最复杂的.在研究这个问题之前,建议先阅读这个系列的前两篇以熟悉HMM模型和HMM的前向后向算法,以及EM算法原理总结,这些在本篇里会用到.在李航的<统计学习方法>中,这个算法的讲解只考虑了单个观测

隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率

隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列(TODO) 在隐马尔科夫模型HMM(一)HMM模型中,我们讲到了HMM模型的基础知识和HMM的三个基本问题,本篇我们就关注于HMM第一个基本问题的解决方法,即已知模型和观测序列,求观测序列出现的概率. 1. 回顾HMM问题一:求观测序列的概率 首先我们回顾下HMM模型的问题一.这个

隐马尔科夫模型HMM(一)HMM模型

隐马尔科夫模型HMM(一)HMM模型基础 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率(TODO) 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列(TODO) 隐马尔科夫模型(Hidden Markov Model,以下简称HMM)是比较经典的机器学习模型了,它在语言识别,自然语言处理,模式识别等领域得到广泛的应用.当然,随着目前深度学习的崛起,尤其是RNN,LSTM等神经网络序列模型的火热,HMM的地位有所下

七月算法-12月机器学习在线班--第十七次课笔记-隐马尔科夫模型HMM

七月算法-12月机器学习--第十七次课笔记-隐马尔科夫模型HMM 七月算法(julyedu.com)12月机器学习在线班学习笔记http://www.julyedu.com 隐马尔科夫模型 三个部分:概率计算,参数估计,模型预测 1,HMM定义 HMM由初始概率分布π.状态转移概率分布A以及观测概率分布B确定. Eg:以中文分词为例子 隐状态为="2",是不是终止字,是/否?(Y/N)即是不是最后一个字. A矩阵:第一个:当前是终止字,下一个也是终止字的概率 B是当前的隐状态是终止词,

隐马尔科夫模型HMM

隐马尔科夫模型HMM 作者:樱花猪 摘要: 本文为七月算法(julyedu.com)12月机器学习第十七次课在线笔记.隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔科夫过程.其难点是从可观察的参数中确定该过程的隐含参数,然后利用这些参数来作进一步的分析.在早些年HMM模型被非常广泛的应用,而现在随着机器学习的发展HMM模型的应用场景越来越小然而在图像识别等领域HMM依然起着重要的作用. 引言: 隐马尔科夫模型是马尔科夫链的一种,它

隐马尔科夫模型 HMM(Hidden Markov Model)

本科阶段学了三四遍的HMM,机器学习课,自然语言处理课,中文信息处理课:如今学研究生的自然语言处理,又碰见了这个老熟人: 虽多次碰到,但总觉得一知半解,对其了解不够全面,借着这次的机会,我想要直接搞定这个大名鼎鼎的模型,也省着之后遇到再费心. Outline 模型引入与背景介绍 从概率图讲起 贝叶斯网络.马尔科夫模型.马尔科夫过程.马尔科夫网络.条件随机场 HMM的形式化表示 Markov Model的形式化表示 HMM的形式化表示 HMM的两个基本假设 HMM的三个基本问题 Evalution

【ML-13-1】隐马尔科夫模型HMM

[ML-13-1]隐马尔科夫模型HMM [ML-13-2]隐马尔科夫模型HMM--前向后向算法 [ML-13-3]隐马尔科夫模型HMM--Baum-Welch(鲍姆-韦尔奇) [ML-13-4]隐马尔科夫模型HMM--预测问题Viterbi(维特比)算法 目录 基础知识-马尔可夫链 HMM简介 HMM定义 HMM模型的三个基本问题 举例 一.基础知识-马尔可夫链 1.1 马尔可夫性质 设{X(t), t ∈ T}是一个随机过程,E为其状态空间,若对于任意的t1<t2< ...<tn<

隐马尔科夫模型(HMM)

基本概念 1Markov Models 2Hidden Markov Models 3概率计算算法前向后向算法 1-3-1直接计算 1-3-2前向算法 1-3-3后向算法 4学习问题Baum-Welch算法也就是EM算法 5预测算法 基本概念 1.1Markov Models 处理顺序数据的最简单的方式是忽略顺序的性质,将观测看做独立同分布,然而这样无法利用观测之间的相关性.例如:预测下明天是否会下雨,所有数据看成独立同分布只能得到雨天的相对频率,而实际中,我们知道天气会呈现持续若干天的趋势,观

通俗理解隐马尔科夫模型HMM(转载)

作者:Yang Eninala 链接:https://www.zhihu.com/question/20962240/answer/33438846 来源:知乎 著作权归作者所有,转载请联系作者获得授权. 隐马尔可夫(HMM)好讲,简单易懂不好讲.我认为 @者也的回答没什么错误,不过我想说个更通俗易懂的例子.我希望我的读者不是专家,而是对这个问题感兴趣的入门者,所以我会多阐述数学思想,少写公式.霍金曾经说过,你多写一个公式,就会少一半的读者.所以时间简史这本关于物理的书和麦当娜关于性的书卖的一样