调制信号,基带信号

你骑着马儿快速跑向远方,你就是低频的调制信号,马儿就是高频信号。到了地方,你下马,就是解调
时间: 2024-08-25 12:34:38

调制信号,基带信号的相关文章

基于ANN的6种调制信号自动调制识别(2ASK、4ASK、2FSK、4FSK、2PSK、4PSK)

目的: 实现6种(2ASK.4ASK.2FSK.4FSK.2PSK.4PSK)调制信号自动调制识别. 条件:windows 10,MATLAB 2014a 内容: 本实验设计了一个分层结构的MLP神经网络分类器.该分类器使用BP算法,自适应改变判决门限,6种调制信号的整体平均识别率为96.94. 更多内容查看:word版(内附完整源代码)下载地址:http://download.csdn.net/download/lanluyug/9923631 一.数字通信调制信号matlab实现原理 1.1

调制解调技术

调制就是对信号源的编码信息进行处理,使其变为适合于信道传输的形式的过程.一般来说,信号源的编码信息(信源)含有直流分量和频率较低的频率分量,称为基带信号.基带信号往往不能作为传输信号,因此必须把基带信号转变为一个相对基带频率而言频率非常高的带通信号以适合于信道传输.这个带通信号叫做已调信号,而基带信号叫做调制信号.调制是通过改变高频载波的幅度.相位或者频率,使其随着基带信号的变化而变化来实现的.而解调则是将基带信号从载波中提取出来以便预定的接收者(信宿)处理和理解的过程. 调制可分为两类:线性调

NI PXIe-5644R矢量信号收发器硬件架构

http://xilinx.eetrend.com/article/7471 随着NI PXIe-5644R向量信号收发器(VST)的诞生,NI通过将用户可编程FPGA的灵活性引入RF仪器中,重塑了仪器的概念. 1. 高性能与革命性的设计 NI PXIe-5644R VST在用于现场可编程门阵列(FPGA)中,将矢量信号分析仪(VSA)和矢量信号发生器(VSG)中典型的RF I/O功能与NI或用户定义用于实现信号处理和控制的功能结合在一起.RF输入和RF输出包含独立的本地振荡器(LO).65 M

DVB-C系统中QAM调制与解调仿真

本文简单记录一下自己学习<通信原理>的时候调试的一个仿真DVB-C(Cable,数字有线电视)系统中QAM调制和解调的程序.自己一直是研究"信源"方面的东西,所以对"信道"这方面的知识进行实践的机会一直不是很多,做这个小程序的过程中也熟悉了不少相关的知识.在这个程序中,每执行一步操作,都会画出时域信号图和频域信号图,同时会在控制台打印出有关变量的取值,对于理解QAM调制与解调有一定的帮助. 一.DVB-C中QAM的调制与解调 简单介绍DVB-C系统中的Q

通信算法之九:4FSK调制解调仿真链路

一.  4FSK原理 DMR系统,数字集群通信系统.DMR协议采用的调制方式4FSK,是一种恒包络调制,调制时每秒发送2400个符号,每个符号携带两比特的信息.最大频偏D定义如下:D = 3h/2T,h代表每个调制的频偏系数,0.6.T标示符号周期,为1/2400.D=2160. 4FSK调制器由一个平方根升余弦滤波器级联一个频率调制器组成.第一部分是成型滤波器模块,产生四电平的基带带限信号作为调制信号.第二部分是跳频部分FM. 调频是角度调制的一种,角度调制一般表示为:Sm(t) = Acos

RFID 基础/分类/编码/调制/传输

不同频段的RFID产品会有不同的特性,本文详细介绍了无源的感应器在不同工作频率产品的特性以及主要的应用. 目前定义RFID产品的工作频率有低频.高频和甚高频的频率范围内的符合不同标准的不同的产品,而且不同频段的RFID产品会有不同的特性. 其中感应器有无源和有源两种方式,下面详细介绍无源的感应器在不同工作频率产品的特性以及主要的应用. 1. 低频(从125KHz到134KHz)   其实RFID技术首先在低频得到广泛的应用和推广.该频率主要是通过电感耦合的方式进行工作, 也就是在读写器线圈和感应

数字调制 - ASK, OOK, FSK, PSK, BPSK, QPSK, 8PSK

数字调制:用数字信号对正弦或余弦高频振荡进行调制主要有: ASK --幅移键控调制,把二进制符号0和1分别用不同的幅度来表示. FSK --频移键控调制,即用不同的频率来表示不同的符号.如2KHz表示0,3KHz表示1. PSK--相移键控调制,通过二进制符号0和1来判断信号前后相位.如1时用π相位,0时用0相位. GFSK--高斯频移键控,在调制之前通过一个高斯低通 滤波器来限制信号的频谱宽度 . GMSK -- 高斯滤波最小频移键控,GSM系统所用调制技术. QAM--正交幅度调制. DPS

信号与系统

大牛很通俗地介绍<信号与系统> 第一课 什么是卷积 卷积有什么用 什么是傅利叶变换 什么是拉普拉斯变换 引子 很多朋友和我一样,工科电子类专业,学了一堆信号方面的课,什么都没学懂,背了公式考了试,然后毕业了. ? ?先说"卷积有什么用"这个问题.(有人抢答,"卷积"是为了学习"信号与系统"这门课的后续章节而存在的.我大吼一声,把他拖出去枪毙!) ? ?讲一个故事: ? ?张三刚刚应聘到了一个电子产品公司做测试人员,他没有学过"

复信号 解析信号 高速AD 正交采样(转)

你说的两个AD是常见的正交采样,采得IQ两路正交信号,两路采样的相位是不一样的,可以保证在降低采样速率的前提下可以保留信号复包络的幅度.相位等信息不丢失.你可以查一下正交采样,或正交双通道,或是I,Q两路这些关键词,看多了,就知道咋回事了.下边是网上一些基本的知识:信号是信息的载体,实际的信号总是实的,但在实际应用中采用复信号却可以带来很大好处,由于实信号具有共轭对称的频谱,从信息的角度来看,其负频谱部分是冗余的,将实信号的负频谱部分去掉,只保留正频谱部分的信号,其频谱不存在共轭对称性,所对应的