NP-Hard问题和NP-Complete问题

对 NP-Hard问题和NP-Complete问题的一个直观的理解就是指那些很难(很可能是不可能)找到多项式时间算法的问题。因此一般初学算法的人都会问这样一个问题:NP-Hard和NP-Complete有什么不同?简单的回答是根据定义,如果所有NP问题都可以多项式归约到问题A,那么问题A就是 NP-Hard;如果问题A既是NP-Hard又是NP,那么它就是NP-Complete。从定义我们很容易看出,NP-Hard问题类包含了NP- Complete类。但进一步的我们会问,是否有属于NP-Hard但不属于NP-Complete的问题呢?答案是肯定的。例如停机问题,也即给出一个程序和输入,判定它的运行是否会终止。停机问题是不可判的,那它当然也不是NP问题。但对于SAT这样的NP-Complete问题,却可以多项式归约到停机问题。因为我们可以构造程序A,该程序对输入的公式穷举其变量的所有赋值,如果存在赋值使其为真,则停机,否则进入无限循环。这样,判断公式是否可满足便转化为判断以公式为输入的程序A是否停机。所以,停机问题是NP-Hard而不是NP-Complete。

NP问题就是指其解的正确性可以在多项式时间内被检查的一类问题。比如说数组求和,得到一个解,这个解对不对呢,显然是可以在多项式时间内验证的。再比如说SAT,如果得到一个解,也是能在多项式时间内验证正确性的。所以SAT和求和等等都是NP问题。然后呢,有一部分NP问题的解已经可以在多项式时间内找到,比如数组求和,这部分问题就是NP中比较简单的一部分,被命名为P类问题。那么P以外的NP问题,就是目前还不能够在多项式时间内求解的问题了。会不会将来某一天,有大牛发明了牛算法,把这些问题都在多项式时间内解决呢?也就是说,会不会所有的NP问题,其实都是P类问题呢,只是人类尚未发现呢?NP=P吗?

可想而知,证明NP=P的路途是艰难的,因为NP问题实在太多了,要一一找到多项式算法。这时Stephen A. Cook这位大牛出现了,写了一篇The Complexity of Theorem Proving Procedures,提出了一个NP-complete的概念。NPC指的是NP问题中最难的一部分问题,所有的NP问题都能在多项式时间内归约到NPC上。所谓归约是指,若A归约到B,B很容易解决,则A很容易解决。显然,如果有任何一道NPC问题在多项式时间内解决了,那么所有的NP问题就都成了P类问题,NP=P就得到证明了,这极大的简化了证明过程。那么怎样证明一个问题C是NP完全问题呢?首先,要证明C是NP问题,也就是C的解的正确性容易验证;然后要证明有一个NP完全问题B,能够在多项式时间内归约到C。这就要求必须先存在至少一个NPC问题。这时Cook大牛就在1971年证明了NP完全问题的祖先就是SAT。SAT问题是指给定一个包含n个布尔变量的逻辑式,问是否存在一个取值组合,使得该式被满足。Cook证明了SAT是一个NPC问题,如果SAT容易解决,那么所有NP都容易解决。Cook是怎样做到的呢?

他通过非确定性图灵机做到的。非确定性图灵机是一类特殊的图灵机,这种机器很会猜,只要问题有一个解,它就能够在多项式时间内猜到。Cook 证明了,SAT总结了该机器在计算过程中必须满足的所有约束条件,任何一个NP问题在这种机器上的计算过程,都可以描述成一个SAT问题。所以,如果你能有一个解决SAT的好算法,你就能够解决非确定性图灵机的计算问题,因为NP问题在非图机上都是多项式解决的,所以你解决了SAT,就能解决所有NP,因此——SAT是一个NP完全问题。感谢Cook,我们已经有了一个NPC问题,剩下的就好办了,用归约来证明就可以了。目前人们已经发现了成千上万的NPC问题,解决一个,NP=P就得证,可以得千年大奖(我认为还能立刻获得图灵奖)。

那么肯定有人要问了,那么NP之外,还有一些连验证解都不能多项式解决的问题呢。这部分问题,就算是NP=P,都不一定能多项式解决,被命名为NP-hard问题。NP-hard太难了,怎样找到一个完美的女朋友就是NP- hard问题。一个NP-hard问题,可以被一个NP完全问题归约到,也就是说,如果有一个NP-hard得到解决,那么所有NP也就都得到解决了。

让我冒着出错被人砸版砖的危险来解释一下P/NP/NP-Complete/NP-Hard。

1,计算复杂性
这是描述一种算法需要多少“时间”的度量。(也有空间复杂性,但因为它们能相互转换,所以通常我们就说时间复杂性。对于大小为 n 的输入,我们用含 n 的简化式子来表达。(所谓简化式子,就是忽略系数、常数,仅保留最“大”的那部分)
比如找出 n 个数中最大的一个,很简单,就是把第一个数和第二个比,其中大的那个再和第三个比,依次类推,总共要比 n-1 次,我们记作 O(n) (对于 n 可以是很大很大的情况下,-1可以忽略不计了)。
再比如从小到大排好的 n 个数,从中找出等于 x 的那个。一种方法是按着顺序从头到尾一个个找,最好情况是第一个就是 x,最坏情况是比较了 n 次直最后一个,因此最坏情况下的计算复杂度也是 O(n)。还有一种方法:先取中间那个数和 x 比较,如偏大则在前一半数中找,如偏小则在后一半数中找,每次都是取中间的那个数进行比较,则最坏情况是 lg(n)/lg2。忽略系数lg2,算法复杂度是O(lgn)。

2,计算复杂性的排序:
根据含 n 的表达式随 n 增大的增长速度,可以将它们排序:1 < lg(n) < n < nlg(n) < n^2 < ... < n^k (k是常数)< ... < 2^n。最后这个 2 的 n 次方就是级数增长了,读过棋盘上放麦粒故事的人都知道这个增长速度有多快。而之前的那些都是 n 的多项式时间的复杂度。为什么我们在这里忽略所有的系数、常数,例如 2*n^3+9*n^2 可以被简化为 n^3?用集合什么的都能解释,我忘了精确的说法了。如果你还记得微积分的话就想像一下对 (2*n^3+9*n^2)/(n^3) 求导,结果是0,没区别,对不?
2,P 问题:对一个问题,凡是能找到计算复杂度可以表示为多项式的确定算法,这个问题就属于 P (polynomial) 问题。

3,NP 问题:
NP 中的 N 是指非确定的(non-deterministic)算法,这是这样一种算法:(1)猜一个答案。(2)验证这个答案是否正确。(3)只要存在某次验证,答案是正确的,则该算法得解。
NP (non-deterministic polynomial)问题就是指,用这样的非确定的算法,验证步骤(2)有多项式时间的计算复杂度的算法。

4,问题的归约:
这……我该用什么术语来解释呢?集合?太难说清了……如果你还记得函数的映射的话就比较容易想象了。
大致就是这样:找从问题1的所有输入到问题2的所有输入的对应,如果相应的,也能有问题2的所有输出到问题1的所有输出的对应,则若我们找到了问题2的解法,就能通过输入、输出的对应关系,得到问题1的解法。由此我们说问题1可归约到问题2。

6,NP完全问题 (NP-Complete):
有这样一种问题,所有 NP 问题都可以归约到这种问题,则它是 NP-Complete 问题。可满足性问题就是一个 NP 完全问题,此外著名的给图染色、哈密尔顿环、背包、货郎问题都是 NP 完全问题。

5,NP-Hard:

从直觉上说,P<=NP<=NP-Complete<=NP-Hard,问题的难度递增。但目前只能证明 P 属于 NP,究竟 P=NP 还是 P 真包含于 NP 还未知。

时间: 2024-08-28 08:22:20

NP-Hard问题和NP-Complete问题的相关文章

算法课笔记系列(八)——NP问题及其计算复杂性

本周的内容是NP问题,NP的全称是Non-deterministic Polynomial,即多项式复杂程度的非确定性问题.百度上对NP的解释是,P/NP问题是在理论信息学中计算复杂度理论里至今没有解决的问题.通俗的说,是将不可知的问题转化为已知的问题,进而计算器复杂度. 首先介绍多项式时间的约减,即Polynomial-Time Reductions,通过解决另一个不同问题的假设的子程序,使用不包含子程序在内的多项式时间来解决一个问题的方法.主观上,一个多项式时间约减证明了第一个问题不比第二个

算法导论之P、NP、NPC问题

P.NP.NPC 概念 > P问题:能够在多项式时间内解决的决策问题. -举例: 图搜索问题.最短路径问题.最小生成树问题······ > NP问题:不能在多项式时间内解决或不确定能不能在多项式时间内解决,但能在多项式时间验证的问题. -验证:给定一个问题的实例.证书(类似于证据),需要验证这个证书是这个问题的正确答案. - 举例:汉密尔顿路径,实例为G=(V,E),证书为顶点序列 {v0,v1,v2,v3,-.,vk},我们的目的是要验证这个证书就是这个问题的答案,验证方法为:先遍历一遍这个

什么是P问题、NP问题和NPC问题

本文转自:http://www.matrix67.com/blog/archives/105 这或许是众多OIer最大的误区之一. 你会经常看到网上出现“这怎么做,这不是NP问题吗”.“这个只有搜了,这已经被证明是NP问题了”之类的话.你要知道,大多数人此时所说的NP问题其实都是指的NPC问题.他们没有搞清楚NP问题和NPC问题的概念.NP问题并不是那种“只有搜才行”的问题,NPC问题才是.好,行了,基本上这个误解已经被澄清了.下面的内容都是在讲什么是P问题,什么是NP问题,什么是NPC问题,你

NP难问题求解综述

NP难问题求解综述 摘要:定义NP问题及P类问题,并介绍一些常见的NP问题,以及NP问题的一些求解方法,最后最NP问题求解的发展方向做一些展望.   关键词:NP难问题 P类问题 算法 最优化问题   正文: 一.NP难问题及P类问题 为了解释NP难问题及P类问题,先介绍确定性算法和非确定性算法这两个概念,设A是求解问题Π的一个算法,如果在算法的整个执行过程中,每一步只有一个确定的选择,则称算法A是确定性(Determinism)算法.设A是求解问题Π的一个算法,如果算法A以如下猜测并验证的方式

P,NP,NPC,NPC-HARD

P: 能在多项式时间内解决的问题 NP: 不能在多项式时间内解决或不确定能不能在多项式时间内解决,但能在多项式时间验证的问题 NPC: NP完全问题,所有NP问题在多项式时间内都能约化(Reducibility)到它的NP问题,即解决了此NPC问题,所有NP问题也都得到解决. NP hard:NP难问题,所有NP问题在多项式时间内都能约化(Reducibility)到它的问题(不一定是NP问题). 可以参考:https://www.zybuluo.com/chanvee/note/12722

P NP NPC(2)(转载)

P: 能在多项式时间内解决的问题 NP: 不能在多项式时间内解决或不确定能不能在多项式时间内解决,但能在多项式时间验证的问题 NPC: NP完全问题,所有NP问题在多项式时间内都能约化(Reducibility)到它的NP问题,即解决了此NPC问题,所有NP问题也都得到解决. NP hard:NP难问题,所有NP问题在多项式时间内都能约化(Reducibility)到它的问题(不一定是NP问题). 二.四者联系的图形表示 将四种问题用集合表示,它们的关系图1所示. 图1 P NP NPC NPh

P问题、NP问题、NPC问题

看师兄们的论文经常说一句这是个NP难问题,所以采用另外一种方法来代替(比如凸松弛,把l0范数的问题松弛为l1范数的问题来求解).然后搜索了相关知识,也还是没看太懂,把一些理论知识先贴上来,希望以后再接触到会有更好的理解. 参考来源:http://blog.csdn.net/jbb0523/article/details/40710449 >简要介绍 (简单介绍了相关概念和从属关系,若时间不紧可详细看下文中的相关解释) 一.相关概念 P: 能在多项式时间内解决的问题 NP: 不能在多项式时间内解决

那传说中的P、NP以及NPC问题

那传说中的P.NP以及NPC问题     (这里只是自己的一些总结) 在讲这几个问题之前,有几个东西是必须要说的,包括时间复杂度.空间复杂度.图灵机什么的.那么我们就慢慢来一一说来.    图灵机:图灵机其实就是一个计算模型,是由图灵提出来的.图灵机号称可以模拟实际计算机的所有计算行为,计算能力还超过现有的计算机.但是还是有图灵机无法做到的事情,就好像计算机并不能处理所有的事情一样. 定义: 1)有一个无限长的带子作为无限存储. 2)有一个读写头,能在带子上读.写和左右移动. 3)有一套控制规则

np问题

如果一个问题可以找到一个能在多项式的时间里解决它的算法,那么这个问题就属于P问题.P是英文单词多项式的第一个字母 O(1),O(log(n)),O(n^a)等,我们把它叫做多项式级的复杂度 NP问题是指可以在多项式的时间里验证一个解的问题.NP问题的另一个定义是,可以在多项式的时间里猜出一个解的问题,找一个解很困难,但验证一个解很容易.验证一个解只需要O(n)的时间复杂度 当然有不是NP问题的问题,即你猜到了解但是没用,因为你不能在多项式的时间里去验证它.下面我要举的例子是一个经典的例子,它指出

np.newaxis 为 numpy.ndarray(多维数组)增加一个轴

>> type(np.newaxis) NoneType np.newaxis 在使用和功能上等价于 None,其实就是 None 的一个别名. 1. np.newaxis 的实用 >> x = np.arange(3) >> x array([0, 1, 2]) >> x.shape (3,) >> x[:, np.newaxis] array([[0], [1], [2]]) >> x[:, None] array([[0], [