【H.264/AVC视频编解码技术详解】十三、熵编码算法(4):H.264使用CAVLC解析宏块的残差数据

《H.264/AVC视频编解码技术详解》视频教程已经在“CSDN学院”上线,视频中详述了H.264的背景、标准协议和实现,并通过一个实战工程的形式对H.264的标准进行解析和实现,欢迎观看!

“纸上得来终觉浅,绝知此事要躬行”,只有自己按照标准文档以代码的形式操作一遍,才能对视频压缩编码标准的思想和方法有足够深刻的理解和体会!

链接地址:H.264/AVC视频编解码技术详解

GitHub代码地址:点击这里


1. H.264的CAVLC解析宏块残差数据的流程

在H.264的解码器在解析宏块的残差数据时,其流程类似于上文提到的CAVLC编码的逆过程。在解析一个宏块残差的时候,首先解析的是残差矩阵的非零系数以及拖尾系数的个数numCoefftrailingOnes。随后是每一个拖尾系数的符号trailingSigns。而后是每一个非拖尾非零系数level的值。然后解析的是最高频非零系数前面的零的总个数totalZeros。最后是每一个非零系数前连续零的个数runBefore

2. 计算CAVLC解析残差的上下文参数

CAVLC编解码过程中的上下文即为当前块值numberCurrent。该值与当前像素块的左侧邻块和上方邻块中非零系数的个数有关。

以尺寸为4×4宏块分割方式为例。当前像素块同左侧和上方邻块的相对位置关系如下图:

对于当前像素块,若其上方和左侧相邻块都不可见(unavailable),那么当前像素块的numberCurrent值为0;若上方或左侧,有且仅有一个相邻块是可见的,那么当前像素块的numberCurrent值即为这个邻块中非零系数的个数numCoeff;若两个邻块都是可见的,那么当前像素块的numberCurrent值为两个邻块numCoeff的四舍五入平均值。

3. 解析非零系数总个数和拖尾系数个数

在CAVLC的解析过程中,非零系数总个数numCoeff和拖尾系数个数trailingOnes两个值是一起解析出来的。解析这两个值依据的是标准文档中的表9-5,如下表即是表9-5的部分:

根据之前解析出来的numberCurrent值,在这个表格中选择一列作为解码数据的参考。此后,从码流中读取相应长度的二进制码流,与表格中的值相比较。当码流与表格中的值匹配时,表格的前两列作为数组的下标,其值即等于希望解析出来的numCoeff和trailingOnes的值。

4. 解析拖尾系数的符号

我们知道变换系数矩阵中最高频的几个绝对值为1的非零系数称之为拖尾系数,其个数范围为0~3个。表示每一个拖尾系数的符号可以一个bit的trailing_ones_sign_flag表示:

  • 当trailing_ones_sign_flag为1,拖尾系数符号为-;
  • 当trailing_ones_sign_flag为0,拖尾系数符号为+;

5. 解析非零系数的幅值

非拖尾的非零系数的幅值通常表示为levels。Levels的解析相对较为复杂。该部分是从最高频开始解析到最低频的非零系数为止。也就是说,levels部分是按频率倒序解析的。

在解析每一个level的时候,每一个值都会按照前缀(prefix)和后缀(suffix)两部分进行解析。

5.1 解析level_prefix部分:

Level_prefix部分即level的前缀部分,该部分的解析较为简单,以伪代码表示如:

leadingZeroBits = ?1
for( b = 0; !b; leadingZeroBits++ )
    b = read_bits( 1 )
level_prefix = leadingZeroBits

结合标准文档中的表9-6的表述可知,level的前缀值即为当前码流的下一个比特1之前连续的比特0的个数。

5.2 解析level_suffix部分:

Level_suffix部分的解析比prefix部分复杂,总体上可以分为以下几个步骤:

  1. 解析过程开始之前,初始化suffixLength的值:当非零系数总数numCoeff大于10且拖尾系数个数trailingOnes等于3时,suffixLength初始化为1,否则初始化为0;
  2. 确定levelSuffixSize的值:通常情况下,levelSuffixSize的值等于当前的suffixLength,除了下列两种意外情况:第一,level_prefix的值等于14且suffixLength为0,此时levelSuffixSize设为4;第二,level_prefix大于等于15,此时levelSuffixSize设为level_prefix-3;
  3. 解析level_suffix的值:根据levelSuffixSize的值作为长度,在码流中读取对应的二进制数据作为level_suffix;若levelSuffixSize为0,则level_suffix的值为0;

5.3 由level_prefix和level_suffix部分组合成为levelCode

在解析完成level_prefix和level_suffix之后,将二者组合生成levelCode。计算方法为:levelCode=(Min(15,level_prefix)<

5.3 由levelCode计算level

根据计算得到的levelCode的奇偶性,判断level的符号:

  • 若levelCode是偶数,返回level值为(levelCode + 2)>>1;
  • 若levelCode为奇数,返回level值为(?levelCode?1)>>1;

5.4 更新suffixLength的值

在解析过程中更新suffixLength体现了上下文自适应的思想。

  • 当suffixLength = 0时,suffixLength更新为1;
  • 当suffixLength小于6,且刚刚解析出来的level值大于阈值threshold时,suffixLength自增1;阈值threshold定义为( 3 << ( suffixLength ? 1 ) );

6. 解析零系数信息

变换系数矩阵中的零系数也是重要的信息。CAVLC解析的零系数信息主要分两类:

  • totalZeros:每个矩阵一个值,表示最高频非零系数前零系数的总个数;
  • runBefore:每个非零系数一个值,表示该非零系数前连续0的总个数;

解析totalZeros的过程与解析numCoeff和trailingOnes类似,都是从一个二维表格中查找某列表格,在从码流中查找与表格中匹配的值,然后索引便是所求的totalZeros值。解析totalZeros的表格为标准文档中的表9-7。下图是表9-7的局部:

在解析totalZeros的过程中,选择表格的索引值等于当前矩阵块的非零系数个数numCoeff。

解析每个非零系数的runBefore时,也是按照从高频到低频逆序处理的。每次解析的runBefore也是按照类似上述的解析方法,从码流中读取相应长度的码流并与表格中的值比对,匹配后返回索引值作为解析的值。解析runBefore参考标准文档的表9-10:

每次解析出一个runBefore后,totalZeros都要减去该值,然后进行下一次处理。若有n个非零系数,则总共需要解析n-1个runBefore。最低频率的非零系数前的runBefore不需要写在码流中,因为可以通过上述信息推算出。

以上就是解析一个宏块的4×4残差系数矩阵相应语法元素的主要思想和过程。当然实际的解析过程比此要复杂得多,更详细的情况可到CSDN学院的课程:H.264/AVC视频编解码技术详解中观看。

时间: 2024-12-14 18:43:28

【H.264/AVC视频编解码技术详解】十三、熵编码算法(4):H.264使用CAVLC解析宏块的残差数据的相关文章

【H.264/AVC视频编解码技术详解】十一、H.264的Slice Header解析

<H.264/AVC视频编解码技术详解>视频教程已经在"CSDN学院"上线,视频中详述了H.264的背景.标准协议和实现,并通过一个实战工程的形式对H.264的标准进行解析和实现,欢迎观看! "纸上得来终觉浅,绝知此事要躬行",只有自己按照标准文档以代码的形式操作一遍,才能对视频压缩编码标准的思想和方法有足够深刻的理解和体会! 链接地址:H.264/AVC视频编解码技术详解 GitHub代码地址:点击这里 H.264中的条带(Slice) 1. Slic

【H.264/AVC视频编解码技术详解】十三、熵编码算法(3):CAVLC原理

<H.264/AVC视频编解码技术详解>视频教程已经在"CSDN学院"上线,视频中详述了H.264的背景.标准协议和实现,并通过一个实战工程的形式对H.264的标准进行解析和实现,欢迎观看! "纸上得来终觉浅,绝知此事要躬行",只有自己按照标准文档以代码的形式操作一遍,才能对视频压缩编码标准的思想和方法有足够深刻的理解和体会! 链接地址:H.264/AVC视频编解码技术详解 GitHub代码地址:点击这里 上下文自适应的变长编码(Context-base

【H.264/AVC视频编解码技术具体解释】十三、熵编码算法(4):H.264使用CAVLC解析宏块的残差数据

<H.264/AVC视频编解码技术具体解释>视频教程已经在"CSDN学院"上线,视频中详述了H.264的背景.标准协议和实现,并通过一个实战project的形式对H.264的标准进行解析和实现,欢迎观看! "纸上得来终觉浅.绝知此事要躬行".仅仅有自己依照标准文档以代码的形式操作一遍,才干对视频压缩编码标准的思想和方法有足够深刻的理解和体会. 链接地址:H.264/AVC视频编解码技术具体解释 GitHub代码地址:点击这里 1. H.264的CAVLC

视频编解码技术详解(H.264、MPEG-4)

一.视频编解码概述 1. 应用场景 视频编码的目的就是压缩视频的占用空间,提高存储和传输的效率,在获得有效的压缩效果的同时,使得压缩过程引起的失真最小.视频压缩算法是通过去除时间.空间的冗余来实现的.通过去除不同类型的冗余,可以明显的压缩数据,代价就是一部分信息失真,可以通过熵编码器(如哈夫曼编码等)进行编码可以获得更高的压缩比.目前主流的图像/视频压缩标准为:JPEG,MPEG,H26X等标准. 2. 主流视频编码标准简介 MPEG-4和H.264(也叫AVC)是目前较为主流的编码标准.每个标

各种音视频编解码学习详解

各种音视频编解码学习详解 媒体业务是网络的主要业务之间.尤其移动互联网业务的兴起,在运营商和应用开发商中,媒体业务份量极重,其中媒体的编解码服务涉及需求分析.应用开发.释放license收费等等.最近因为项目的关系,需要理清媒体的codec,比较搞的是,在豆丁网上看运营商的规范 标准,同一运营商同样的业务在不同文档中不同的要求,而且有些要求就我看来应当是历史的延续,也就是现在已经很少采用了.所以豆丁上看不出所以然,从 wiki上查.中文的wiki信息量有限,很短,而wiki的英文内容内多,删减版

【视频编解码&#183;学习笔记】8. 熵编码算法:基本算法列举 &amp; 指数哥伦布编码

一.H.264中的熵编码基本方法: 熵编码具有消除数据之间统计冗余的功能,在编码端作为最后一道工序,将语法元素写入输出码流 熵解码作为解码过程的第一步,将码流解析出语法元素供后续步骤重建图像使用 在H.264的标准协议中,不同的语法元素指定了不同的熵编码方法.在协议文档中共指定了10种语法元素的描述符,这些描述符表达了码流解析为语法元素值的方法,其中包含了H.264标准所支持的所有熵编码方法: 语法元素描述符 编码方法 b(8) 8位二进制比特位串,用于描述rbsp_byte() f(n) n位

音视频开发的视频编解码技术

2012年8月,爱立信公司推出了首款H.265[1]编解码器,而在仅仅六个月之后,国际电联(ITU)就正式批准通过了HEVC/H.265标准,标准全称为高效视频编码(High Efficiency Video Coding),相较于之前的H.264标准有了相当大的改善,中国华为公司拥有最多的核心专利,是该标准的主导者.国内拥有领先音视频开发技术的AnyChat解决方案,目前采用的是H.264视频编解码技术,相信不久会紧跟趋势采用H.265视频编解码技术. H.265/HEVC的编码架构大致上和H

音视频编解码技术的陷阱与出路,一个研发人员的思考

原来做过挺长时间的音视频编解码的东西,该做个总结了.这里就说下关于音视频编码这类工作的得失与取舍,其实主要是舍,有没有道理,权当一听.各位读者自行判断吧. 拿视频编码标准H.264来说,这真是个好事,视频编码标准化之后,兼容问题就“有法可依”了,利于影片.视频等的传播.但是,却给研究人员带来一个大问题.那就是在同样的标准下,各家公司如何竞争的问题.算法一旦标准化,就失去了发挥的灵活性,每个人.每个公司都是做这些东西.同时也成为了实力雄厚的大公司必须争夺的一个技术高地.其它公司如果也想争一下,就基

视频编解码的理论和实践2:Ffmpeg视频编解码

近几年,视频编解码技术在理论及应用方面都取得了重大的进展,越来越多的人想要了解编解码技术.因此,网易云信研发工程师为大家进行了归纳梳理,从理论及实践两个方面简单介绍视频编解码技术. 相关阅读推荐 <视频直播关键技术:流畅.拥塞和延时追赶> <视频直播技术详解:直播的推流调度> <音视频通话:小议音频处理与压缩技术> <视频编解码的理论和实践1:基础知识介绍>   1.Ffmpeg介绍 <视频编解码的理论和实践1:基础知识介绍>介绍了视频编码的基础