斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时14&&15

课时14 卷积神经网络详解(上)

CNN处理的是一些数据块,在这之间有很多层,一系列的层将输入数据变换为输出数据,所以完成操作的中间量不仅是NN时候讲的那些向量,而是立体结构,有宽,高和深度,在整个计算过程中要保持这些三维特征。这里的深度指的是一个数据体的第三个维度。

工作流程

我们得到一些数据,作为网络的输入,在CNN中我们有这样的滤波器,假设现在我们只有一个滤波器,这些滤波器空间维度很小,我们用这个滤波器来和输入图像做卷积运算。这里的卷积运算,意思是说滤波器要在这个图像的空域范围内全部位置滑动,而且,在每一个位置滤波器和图像做点乘。滤波器表示为w,把这些滤波器当做你的一堆w,然后你在图像范围内滑动这个滤波器,随着我们滑动滤波器,还要计算w的转置和x的乘积加上b。这里的x是输入数据的一小块区域,大小为滤波器的大小。当滤波器在滑动的时候,最后得到的整个结果,我们叫做激活图。激活图给出了在每个空间位置处滤波器的反应。

课时15 卷积神经网络详解(下)

我们每次做池化层时都扔掉了一小部分信息

在全连接层之前会有深度减少的地方

输入的数据中,边缘的数据可能和中心不太一样

我们不会为滤波器进行特定的初始化

池化层没有参数,只有卷积层有参数

规范化层是一个进行规范化的特殊的层,在2012年之后就不再用到了。

当在做反向传播的时候一定要注意,因为参数是共享的,当你在用滤波器做卷积时,所有的神经元都共享参数。你必须小心,所有的滤波器的梯度都汇总到一个权重。

ZFNet

基于AlexNet构建
conv1的滤波器大小、步长比AlexNet更小,对原始图像做更密集的计算。
conv3、conv4、conv5相比AlexNet有更多的过滤器

VGG NET

VGG并没有在疯狂的架构选择(例如你如何设定过滤器个数,尺寸大小,过滤器的大小等参数)上做非常多的工作,VGG的关键点在于在这个操作你重复了多少次(多少层),最后同样的这组参数设定的网络结构重复层叠至16层

VGG网络有一个非常简单的线性结构

GoogLeNet

最关键的创新点是引入了inception模块,但是它仅仅是inception模块的序列,一个接一个进行排列,他们使用的是inception层而不是卷积层,随后他们使用average pool而非全连接层,所以他们省去了大量的参数,他致力于同时减少对内存和计算量的需求。

必须小心处理增加层数,如果仅仅是简单的去做,他将没有什么用处

ResNet

大致的工作原理是我们有plain net,然后选取一张图片,接着有conv,pool,然后继续conv,conv,conv,conv.在ResNet中,在这些有趣的跳跃连接中,除了这种严格将一个容量转移到下一个容量的传递之外,我们还有这些连接。你可以将很多的信息打包进一个小的容器里。

工作方式:

在一个普通的神经网络中,你有一些函数H(x),想做一些计算,你要转换映射后的值,所以你有一个权重层,你有神经元映射后的值,你要将其转换,等等。在残差网络中,你的输入不是去计算你的变换F(x),而是计算过程中需要加上输入的残差。这个2层的神经网络需要计算的是顶部输入的原始表示,而不是一种与之前x完全没关系的表示,这个就是resent模型。

这一层基本上是由默认的恒等运算,这些建立在顶部的恒等上,他只是让他更好的优化

训练残差网络过程

gpu计算空间是这个的瓶颈

时间: 2024-10-14 16:54:44

斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时14&&15的相关文章

斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时26&&27

课时26 图像分割与注意力模型(上) 语义分割:我们有输入图像和固定的几个图像分类,任务是我们想要输入一个图像,然后我们要标记每个像素所属的标签为固定数据类中的一个 使用卷积神经,网络为每个小区块进行分类,对在区块的中间打上标签,对图像的全部区块分类完毕,我们就可以得到每个像素所对应的标签,这个操作实际上非常耗时,因为一张图片将会被分割非常多的小块. 如果这些神经网络具有相关的结构,通过这个图像金字塔方法的话,这些图像的输出将会有不同的感受野. 语义分割的迭代精化 我们有一个输入图像,他们被分割

斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时8&&9

课时8 反向传播与神经网络初步(上) 反向传播在运算连路中,这是一种通过链式法则来进行递推的计算过程,这个链路中的每一个中间变量都会对最终的损失函数产生影响. 链式法则通常包含两部分,局部梯度和后一层的梯度相乘 前向和反向花费的时间是基本一样的. 大的函数也可以直接视作一个整体计算梯度 当局部梯度非常容易求得时,你可以把这部分表达式看作一整个S门 加法:梯度分配器:所以无论何时当你有一个加法运算时,他会分配相等的梯度值. 最大值门:一个梯度路由,他的工作方式是,认为比较大的输入梯度为1,比较小的

斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时24&&25

课时24 深度学习开源库使用介绍(上) Caffe 被用于重新实现AlexNet,然后用AlexNet的特征来解决其他事情 用C++书写的,可以去GitHub上面读取源代码 主要四个类: Blob可以存你的权重,像素值,激活等,是n维的张量,就像NumPy一样,他实际上内部有四个n维张量,这个张量有一个数据的版本,用于存储原始未处理的数据.剩下三个分别有diffs,GPU,CPU: 层是一种与你作业中所需要实现的功能相似的功能,会接收输入的Blob,caffe管这些输入的Blob称为底端输入,然

斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时12&&13

课时12 神经网络训练细节part2(上) 训练神经网络是由四步过程组成,你有一个完整的数据集图像和标签,从数据集中取出一小批样本,我们通过网络做前向传播得到损失,告诉我们目前分类效果怎么样.然后我们反向传播来得到每一个权重的梯度,这个梯度告诉我们如何去调整每一个权重,最终我们能够更好的分类图片. 为什么要使用激活函数? 如果在整个的神经网络中不使用激活函数,你的网络的分类能力基本等同于一个线性分类器,所以激活函数是相当关键的.他提供了所有的方法,你可以他用来存储数据 BN使得网络的训练更加健壮

斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时6

课时6 线性分类器损失函数与最优化(上) 多类SVM损失:这是一个两分类支持向量机的泛化 SVM损失计算了所有不正确的例子,将所有不正确的类别的评分,与正确类别的评分之差加1,将得到的数值与0作比较,取两者中的最大值.然后将所有的数值进行求和.用平均值来代替不会影响结果. 这些评分都是无标度的,因为我们可以随便选择W,让它成比例地增大或者减小,然后分数也随之成比例地变化.所以分数的大小和它的量度的选择紧密相关,将安全系数的值设为1在某种程度上来说只是一个随意的选择. 在实际的数据集中使用这个损失

深度学习与计算机视觉(12)_tensorflow实现基于深度学习的图像补全

原文地址:Image Completion with Deep Learning in TensorFlow by Brandon Amos 原文翻译与校对:@MOLLY && 寒小阳 ([email protected]) 时间:2017年4月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/52665396 声明:版权所有,转载请联系作者并注明出 简介 第一步:将图像理解为一个概率分布的样本 你是怎样补全缺失信息的呢? 但是怎

斯坦福大学深度学习与自然语言处理第一讲:引言

斯坦福大学在三月份开设了一门"深度学习与自然语言处理"的课程:CS224d: Deep Learning for Natural Language Processing ,授课老师是青年才俊Richard Socher,他本人是德国人,大学期间涉足自然语言处理,在德国读研时又专攻计算机视觉,之后在斯坦福大学攻读博士学位,拜师NLP领域的巨牛 Chris Manning和Deep Learning 领域的巨牛 Andrew Ng ,其博士论文是< Recursive Deep Le

斯坦福大学深度学习与自然语言处理第一讲

我学习自然语言是从Christopher D.Manning的统计自然语言处理基础这本书开始的,很多文本分析也是应用统计方法,或者机器学习的方法,而近年来深度学习逐渐渗入各个领域,其在自然语言处理领域中也取得了令人惊叹的效果,这成功的引起了我的重视,决定学习一下.何其所幸,让我找到了斯坦福大学深度学习与自然语言的课程,深得我心啊,所以打算好好学习一下,鉴于我爱自然语言处理中有相关课程的slides,我就直接复制粘贴了,接下来打算做的工作是对该课程中推荐阅读的部分论文做一些笔记.本人才疏学浅,专业

斯坦福大学深度学习与自然语言处理第二讲

第二讲:简单的词向量表示:word2vec, Glove(Simple Word Vector representations: word2vec, GloVe) 转载请注明出处及保留链接“我爱自然语言处理”:http://www.52nlp.cn 本文链接地址:斯坦福大学深度学习与自然语言处理第二讲:词向量 推荐阅读材料: Paper1:[Distributed Representations of Words and Phrases and their Compositionality]]