scikit-learn:4.2.3. Text feature extraction

http://scikit-learn.org/stable/modules/feature_extraction.html

4.2节内容太多,因此将文本特征提取单独作为一块。

1、the bag of words representation

将raw data表示成长度固定的数字特征向量。scikit-learn提供了三个方式:

tokenizing:给每个token(字、词,粒度自己把握)一个整数索引id

counting:每一个token在每一个文档中出现的次数

normalizing:依据每一个token在样本/文档中出现的次数 规范化/权重化 token的重要性。

又一次理解什么是feature、什么事sample:

  • each individual token occurrence frequency (normalized or not) is treated as a feature.
  • the vector of all the token frequencies for a given document is considered a multivariate sample.

Bag of Words or “Bag of n-grams” representation:

general
process (tokenization, counting and normalization) of turning a collection of text documents into numerical feature
vectors,while completelyignoring the relative position information of the words in the document.

2、sparsity

每一个文档中的词,仅仅是整个语料库中全部词。的非常小的一部分。这样造成feature
vector的稀疏性(非常多值为0)。

为了解决存储和运算速度的问题。使用python的scipy.sparse包。

3、common
vectorizer usage

CountVectorizer同一时候实现tokenizing和counting。

參数非常多,但默认的就非常合理了。适合大多数情况,详细參考:http://blog.csdn.net/mmc2015/article/details/46866537

>>> vectorizer = CountVectorizer(min_df=1)
>>> vectorizer
CountVectorizer(analyzer=...‘word‘, binary=False, decode_error=...‘strict‘,
        dtype=<... ‘numpy.int64‘>, encoding=...‘utf-8‘, input=...‘content‘,
        lowercase=True, max_df=1.0, max_features=None, min_df=1,
        ngram_range=(1, 1), preprocessor=None, stop_words=None,
        strip_accents=None, token_pattern=...‘(?u)\\b\\w\\w+\\b‘,
        tokenizer=None, vocabulary=None)

这边的样例说明了它的使用:

http://blog.csdn.net/mmc2015/article/details/46857887

包含fit_transform、transform、get_feature_names()、ngram_range=(min,max)、vocabulary_.get()等。

。。。

4、tf-idf
term weighting

解决(e.g.
“the”, “a”, “is” in English) 某些词出现次数太多。却又不是我们关注的词的问题。

the text.TfidfTransformer class实现了mormalization:

>>> from sklearn.feature_extraction.text import TfidfTransformer
>>> transformer = TfidfTransformer()
>> counts = [[3, 0, 1],
...           [2, 0, 0],
...           [3, 0, 0],
...           [4, 0, 0],
...           [3, 2, 0],
...           [3, 0, 2]]
...
>>> tfidf = transformer.fit_transform(counts)
>>> tfidf
<6x3 sparse matrix of type ‘<... ‘numpy.float64‘>‘
    with 9 stored elements in Compressed Sparse ... format>

>>> tfidf.toarray()
array([[ 0.85...,  0.  ...,  0.52...],
       [ 1.  ...,  0.  ...,  0.  ...],
       [ 1.  ...,  0.  ...,  0.  ...],
       [ 1.  ...,  0.  ...,  0.  ...],
       [ 0.55...,  0.83...,  0.  ...],
       [ 0.63...,  0.  ...,  0.77...]])
>>> transformer.idf_  #idf_保存fit之后的结果
array([ 1. ...,  2.25...,  1.84...])

another class called TfidfVectorizer that
combines all the options of CountVectorizer andTfidfTransformer in
a single model:

假设对于binary
occurrence的feature,使用CountVectorizer的參数设置为binary更好。

。。

bernoulli Naive Bayes也更适合做estimator。

5、Decoding
text files

text是由character组成,但file则由bytes组成,所以要让scikit-learn工作。首先要告诉他file的编码,那么 CountVectorizer就会自己主动解码了。默认的编码方式是UTF-8。解码后的character
set称为Unicode。

假设你载入的file编码方式不是UTF-8,有没有设置encoding參数,则会出现UnicodeDecodeError。

假设编码错误,try:

  • Find out what the actual encoding of the text is. The file might come with a header or README that tells you the encoding, or there might be some standard encoding you can assume based on where the text comes from.
  • You may be able to find out what kind of encoding it is in general using the UNIX command file.
    The Python chardet module comes with a script called chardetect.py that
    will guess the specific encoding, though you cannot rely on its guess being correct.
  • You could try UTF-8 and disregard the errors. You can decode byte strings with bytes.decode(errors=‘replace‘) to
    replace all decoding errors with a meaningless character, or set decode_error=‘replace‘ in the vectorizer.
    This may damage the usefulness of your features.
  • Real text may come from a variety of sources that may have used different encodings, or even be sloppily decoded in a different encoding than the one it was encoded with. This is common in text retrieved from the Web. The Python
    package ftfy can automatically sort out some classes of decoding
    errors, so you could try decoding the unknown text as latin-1 and then using ftfy to
    fix errors.
  • If the text is in a mish-mash of encodings that is simply too hard to sort out (which is the case for the 20 Newsgroups dataset), you can fall back on a simple single-byte encoding such as latin-1.
    Some text may display incorrectly, but at least the same sequence of bytes will always represent the same feature.

For example, the following snippet uses chardet (not shipped with scikit-learn, must be installed separately)
to figure out the encoding of three texts. It then vectorizes the texts and prints the learned vocabulary. The output is not shown here.

>>>

>>> import chardet
>>> text1 = b"Sei mir gegr\xc3\xbc\xc3\x9ft mein Sauerkraut"
>>> text2 = b"holdselig sind deine Ger\xfcche"
>>> text3 = b"\xff\xfeA\x00u\x00f\x00 \x00F\x00l\x00\xfc\x00g\x00e\x00l\x00n\x00 \x00d\x00e\x00s\x00 \x00G\x00e\x00s\x00a\x00n\x00g\x00e\x00s\x00,\x00 \x00H\x00e\x00r\x00z\x00l\x00i\x00e\x00b\x00c\x00h\x00e\x00n\x00,\x00 \x00t\x00r\x00a\x00g\x00 \x00i\x00c\x00h\x00 \x00d\x00i\x00c\x00h\x00 \x00f\x00o\x00r\x00t\x00"
>>> decoded = [x.decode(chardet.detect(x)[‘encoding‘])
...            for x in (text1, text2, text3)]
>>> v = CountVectorizer().fit(decoded).vocabulary_
>>> for term in v: print(v)

(Depending on the version of chardet, it might get the first one wrong.)

6、应用和实例

推荐看一下第三个样例。

In particular in a supervised setting it can be successfully combined with fast and scalable linear models to train document classifiers, for instance:

In an unsupervised setting it can be used to group similar documents together by applying clustering algorithms such as K-means:

Finally it is possible to discover the main topics of a corpus by relaxing the hard assignment constraint of clustering, for instance by using Non-negative
matrix factorization (NMF or NNMF)
:

7、bag
of words的缺陷

misspelling、word
derivations、word order dependece。拼写错误(word wprd wrod)、词汇的变形(word words、arrive arriving)、词汇之间的顺序及依赖关系。

使用N-gram而不要单单使用unigram。

另外,还能够使用这里http://blog.csdn.net/mmc2015/article/details/46730289提到的词干分析方法。

给个样例,以char_wb为例了:

>>> ngram_vectorizer = CountVectorizer(analyzer=‘char_wb‘, ngram_range=(2, 2), min_df=1)
>>> counts = ngram_vectorizer.fit_transform([‘words‘, ‘wprds‘])
>>> ngram_vectorizer.get_feature_names() == (
...     [‘ w‘, ‘ds‘, ‘or‘, ‘pr‘, ‘rd‘, ‘s ‘, ‘wo‘, ‘wp‘])
True
>>> counts.toarray().astype(int)
array([[1, 1, 1, 0, 1, 1, 1, 0],
       [1, 1, 0, 1, 1, 1, 0, 1]])

下三部分有时间写。。。

8、Vectorizing a large text corpus with the hashing trick,使用hashing技巧vectorizing大语料库

使用上面提到的vectorization方法尽管简单,但该方法是基于in-
memory mapping from the string tokens to the integer feature indices (the vocabulary_
 attribute),这导致处理大数据集时会出现非常多问题:memory
use、access slow。

。。

通过结合sklearn.feature_extraction.FeatureHasher class的hashing
trick和CountVectorizer能够解决这些问题。

hash和countVectorizer结合的产物是 HashingVectorizer,。

HashingVectorizer is
stateless, meaning that you don’t have to call fit on
it(直接使用transform就可以):

>>>

>>> from sklearn.feature_extraction.text import HashingVectorizer
>>> hv = HashingVectorizer(n_features=10)
>>> hv.transform(corpus)
...
<4x10 sparse matrix of type ‘<... ‘numpy.float64‘>‘
    with 16 stored elements in Compressed Sparse ... format>

默认的n_features是2**20(one million features)。假设内存有问题,能够略微小一点,比方2**18。而不会造成太多的冲突。。

HashingVectorizer,有两个缺点一定须要注意:

1)不提供IDF加权。由于是stateless。

假设须要的话,能够在pipeline中append一个 TfidfTransformer 。

2)不提供inverse_transform方法,由于hash的单向属性。

即,不能訪问原来的string特征,仅仅能訪问特征的整数索引了。。。

9、Performing out-of-core scaling with HashingVectorizer

HashingVectorizer,也有长处——能够进行out-of-core学习。这对于内存放不下的数据集来说很故意。

策略是,mini-batches fit:Each
mini-batch is vectorized usingHashingVectorizer so
as to guarantee that the input space of the estimator has always the same dimensionality. The amount of memory used at any time is thus bounded by the size of a mini-batch.

这边有个样例能够參考一下:http://scikit-learn.org/stable/auto_examples/applications/plot_out_of_core_classification.html#example-applications-plot-out-of-core-classification-py

10、Customizing the vectorizer classes

自己定义vectorizer。主要体如今怎样提取token吧:

>>> def my_tokenizer(s):
...     return s.split()
...
>>> vectorizer = CountVectorizer(tokenizer=my_tokenizer)
>>> vectorizer.build_analyzer()(u"Some... punctuation!") == (
...     [‘some...‘, ‘punctuation!‘])
True

以下的内容不翻译:

In particular we name:

  • preprocessor: a callable that takes an entire document as input (as a single
    string), and returns a possibly transformed version of the document, still as an entire string. This can be used to remove HTML tags, lowercase the entire document, etc.
  • tokenizer: a callable that takes the output from the preprocessor and splits
    it into tokens, then returns a list of these.
  • analyzer: a callable that replaces the preprocessor and tokenizer. The default
    analyzers all call the preprocessor and tokenizer, but custom analyzers will skip this. N-gram extraction and stop word filtering take place at the analyzer level, so a custom analyzer may have to reproduce these steps.

想要使上面的三者起作用,最好override build_preprocessorbuild_tokenizer` and build_analyzer factory
methods,而不是简单地传递过去custom functions。

一些小技巧例如以下:

  • If documents are pre-tokenized by an external package, then store them in files (or strings) with the tokens separated by whitespace and pass analyzer=str.split
  • Fancy token-level analysis such as stemming, lemmatizing, compound splitting, filtering based on part-of-speech, etc. are not included in the scikit-learn codebase, but can be added by customizing either the tokenizer or the analyzer. Here’s a CountVectorizer with
    a tokenizer and lemmatizer using NLTK:

    >>>

    >>> from nltk import word_tokenize
    >>> from nltk.stem import WordNetLemmatizer
    >>> class LemmaTokenizer(object):
    ...     def __init__(self):
    ...         self.wnl = WordNetLemmatizer()
    ...     def __call__(self, doc):
    ...         return [self.wnl.lemmatize(t) for t in word_tokenize(doc)]
    ...
    >>> vect = CountVectorizer(tokenizer=LemmaTokenizer())  

因为中文不是靠空格切割,所以使用custom vectorizer是很必要的。。

!。!

文本特征提取完成。。。

时间: 2024-10-11 19:59:08

scikit-learn:4.2.3. Text feature extraction的相关文章

机器学习---文本特征提取之词袋模型(Machine Learning Text Feature Extraction Bag of Words)

假设有一段文本:"I have a cat, his name is Huzihu. Huzihu is really cute and friendly. We are good friends." 那么怎么提取这段文本的特征呢? 一个简单的方法就是使用词袋模型(bag of words model).选定文本内一定的词放入词袋,统计词袋内所有词出现的频率(忽略语法和单词出现的顺序),把词频(term frequency)用向量的形式表示出来. 词频统计可以用scikit-learn

Feature extraction - sklearn文本特征提取

http://blog.csdn.net/pipisorry/article/details/41957763 文本特征提取 词袋(Bag of Words)表征 文本分析是机器学习算法的主要应用领域.但是,文本分析的原始数据无法直接丢给算法,这些原始数据是一组符号,因为大多数算法期望的输入是固定长度的数值特征向量而不是不同长度的文本文件.为了解决这个问题,scikit-learn提供了一些实用工具可以用最常见的方式从文本内容中抽取数值特征,比如说: 标记(tokenizing)文本以及为每一个

scikit-learn:4.2. Feature extraction(特征提取,不是特征选择)

http://scikit-learn.org/stable/modules/feature_extraction.html 带病在网吧里. ..... 写.求支持. .. 1.首先澄清两个概念:特征提取和特征选择( Feature extraction is very different from Feature selection ). the former consists in transforming arbitrary data, such as text or images, in

Query意图分析:记一次完整的机器学习过程(scikit learn library学习笔记)

所谓学习问题,是指观察由n个样本组成的集合,并根据这些数据来预测未知数据的性质. 学习任务(一个二分类问题): 区分一个普通的互联网检索Query是否具有某个垂直领域的意图.假设现在有一个O2O领域的垂直搜索引擎,专门为用户提供团购.优惠券的检索:同时存在一个通用的搜索引擎,比如百度,通用搜索引擎希望能够识别出一个Query是否具有O2O检索意图,如果有则调用O2O垂直搜索引擎,获取结果作为通用搜索引擎的结果补充. 我们的目的是学习出一个分类器(classifier),分类器可以理解为一个函数,

scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类

scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import numpy as np from sklearn.pipeline import Pipeline from sklearn.linear_model import SGDClassifier from sklearn.grid_search import GridSearchCV from sk

翻译:打造基于Sublime Text 3的全能python开发环境

原文地址:https://realpython.com/blog/python/setting-up-sublime-text-3-for-full-stack-python-development/ 原文标题:Setting Up Sublime Text 3 for Full Stack Python Development 翻译:打造基于sublime text 3的全能Python开发环境 Sublime Text 3 (ST3) is lightweight, cross-platfo

Python之扩展包安装(scikit learn)

scikit learn 是Python下开源的机器学习包.(安装环境:win7.0 32bit和Python2.7) Python安装第三方扩展包较为方便的方法:easy_install + packages name 在官网 https://pypi.python.org/pypi/setuptools/#windows-simplified 下载名字为 的文件. 在命令行窗口运行 ,安装后,可在python2.7文件夹下生成Scripts文件夹.把路径D:\Python27\Scripts

ufldl学习笔记与编程作业:Feature Extraction Using Convolution,Pooling(卷积和池化抽取特征)

ufldl出了新教程,感觉比之前的好,从基础讲起,系统清晰,又有编程实践. 在deep learning高质量群里面听一些前辈说,不必深究其他机器学习的算法,可以直接来学dl. 于是最近就开始搞这个了,教程加上matlab编程,就是完美啊. 新教程的地址是:http://ufldl.stanford.edu/tutorial/ 学习链接: http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution

SQL Server 2012安装错误案例:Error while enabling Windows feature: NetFx3, Error Code: -2146498298

案例环境: 服务器环境 :    Windows Server 2012 R2 Standard 数据库版本 :    SQL Server 2012 SP1 案例介绍:   在Windows Server 2012 R2 Standard版本上安装SQL SERVER 2012时,安装过程弹出如下错误提示: Error while enabling Windows feature: NetFx3, Error Code: -2146498298, Please try enabling Win