D - Tricky Function
Time Limit:2000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I64u
Submit Status Practice CodeForces 429D
Description
Iahub and Sorin are the best competitive programmers in their town. However, they can‘t both qualify to an important contest. The selection will be made with the help of a single problem. Blatnatalag, a friend of Iahub, managed to get hold of the problem before the contest. Because he wants to make sure Iahub will be the one qualified, he tells Iahub the following task.
You‘re given an (1-based) array a with n elements. Let‘s define function f(i, j)(1 ≤ i, j ≤ n) as (i - j)2 + g(i, j)2. Function g is calculated by the following pseudo-code:
int g(int i, int j) { int sum = 0; for (int k = min(i, j) + 1; k <= max(i, j); k = k + 1) sum = sum + a[k]; return sum;}
Find a value mini ≠ j f(i, j).
Probably by now Iahub already figured out the solution to this problem. Can you?
Input
The first line of input contains a single integer n (2 ≤ n ≤ 100000). Next line contains n integers a[1], a[2], ..., a[n] ( - 104 ≤ a[i] ≤ 104).
Output
Output a single integer — the value of mini ≠ j f(i, j).
Sample Input
Input
41 0 0 -1
Output
1
Input
21 -1
Output
2
求Min((j-i)^2+(sum(a[i+1]~a[j]))^2
我们发现sum(a[i+1]~a[j])=(pre[j]-pre[i])
那么我们求的即是(j-i)^2+(pre[j]-pre[i])^2
我们把(i,pre[i])抽象成一个点,那么所求即是两点距离
Ans即是平面最近点对距离,分治解决
#include<cstdio> #include<cstdlib> #include<algorithm> #include<cmath> #include<cstring> #include<utility> #define x first #define y second using namespace std; typedef long long ll; typedef pair<ll,ll> pi; pi a[100011],ts[100011],que[100011]; int n,i,x; ll ans,pre[100011]; ll dis(pi a,pi b) { return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y); } bool cmpy(pi a,pi b) { return a.y<b.y; } void Solve(int l,int r) { int tc,mid,L,R,i,j; ll mx; if(l+1>=r){ if(r==l+1)ans=min(ans,dis(a[l],a[r])); return; } mid=(l+r)/2; Solve(l,mid); Solve(mid+1,r); mx=a[mid].x; tc=0; for(i=mid;i>=l;i--){ if((mx-a[i].x)*(mx-a[i].x)>=ans)break; ts[++tc]=a[i]; } for(i=mid+1;i<=r;i++){ if((mx-a[i].x)*(mx-a[i].x)>=ans)break; ts[++tc]=a[i]; } sort(ts+1,ts+1+tc,cmpy); L=1;R=0; for(i=1;i<=tc;i++){ R++; que[R]=ts[i]; while(L<R&&(que[L].y-que[R].y)*(que[L].y-que[R].y)>=ans)L++; for(j=L;j<R;j++)ans=min(ans,dis(que[j],que[R])); } } int main() { scanf("%d",&n); for(i=1;i<=n;i++){ scanf("%d",&x); pre[i]=pre[i-1]+x; a[i].x=i;a[i].y=pre[i]; } ans=1ll<<60; Solve(1,n); printf("%I64d\n",ans); }