Function
Time Limit: 7000/3500 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 1701 Accepted Submission(s): 615
Problem Description
The shorter, the simpler. With this problem, you should be convinced of this truth.
You are given an array A of N postive integers, and M queries in the form (l,r). A function F(l,r) (1≤l≤r≤N) is defined as:
F(l,r)={AlF(l,r−1) modArl=r;l<r.
You job is to calculate F(l,r), for each query (l,r).
Input
There are multiple test cases.
The first line of input contains a integer T, indicating number of test cases, and T test cases follow.
For each test case, the first line contains an integer N(1≤N≤100000).
The second line contains N space-separated positive integers: A1,…,AN (0≤Ai≤109).
The third line contains an integer M denoting the number of queries.
The following M lines each contain two integers l,r (1≤l≤r≤N), representing a query.
Output
For each query(l,r), output F(l,r) on one line.
Sample Input
1
3
2 3 3
1
1 3
Sample Output
2
思路:用val[l],每次%上在[l+1,r]中下一个最小的值。
#include <cstdio> #include <algorithm> using namespace std; const int MAXN=100005; struct Node{ int mn,l,r; }a[MAXN*3]; int n,m; int val[MAXN]; void build(int rt,int l,int r) { a[rt].l=l; a[rt].r=r; if(l==r) { scanf("%d",&a[rt].mn); val[l]=a[rt].mn; return ; } int mid=(l+r)>>1; build(rt<<1,l,mid); build((rt<<1)|1,mid+1,r); a[rt].mn=min(a[rt<<1].mn,a[(rt<<1)|1].mn); } void query(int rt,int l,int r,int &val) { if(val==0) return ; if(a[rt].mn>val) return ; if(a[rt].l==a[rt].r) { val%=a[rt].mn; return ; } int mid=(a[rt].l+a[rt].r)>>1; if(r<=mid) { query(rt<<1,l,r,val); } else if(mid<l) { query((rt<<1)|1,l,r,val); } else { query(rt<<1,l,mid,val); query((rt<<1)|1,mid+1,r,val); } } int main() { int T; scanf("%d",&T); while(T--) { scanf("%d",&n); build(1,1,n); scanf("%d",&m); while(m--) { int l,r; scanf("%d%d",&l,&r); if(l==r) { printf("%d\n",val[l]); } else { int res=val[l]; query(1,l+1,r,res); printf("%d\n",res); } } } return 0; }