1.线程的简单使用
使用线程,我们需要引用System.Threading命名空间。创建一个线程最简单的方法就是在 new 一个 Thread,并传递一个ThreadStart委托(无参数)或ParameterizedThreadStart委托(带参数),如下:
class Program { static void Main(string[] args) { // 使用无参数委托ThreadStart Thread t = new Thread(Go); t.Start(); // 使用带参数委托ParameterizedThreadStart Thread t2 = new Thread(GoWithParam); t2.Start("Message from main."); t2.Join();// 等待线程t2完成。 Console.WriteLine("Thread t2 has ended!"); Console.ReadKey(); } static void Go() { Console.WriteLine("Go!"); } static void GoWithParam(object msg) { Console.WriteLine("Go With Param! Message: " + msg); Thread.Sleep(1000);// 模拟耗时操作 } }
2.并发和异步的区别
class Program { static void Main(string[] args) { Thread t1 = new Thread(Working); t1.Name = "Thread1"; Thread t2 = new Thread(Working); t2.Name = "Thread2"; Thread t3 = new Thread(Working); t3.Name = "Thread3"; // 依次启动3个线程。 t1.Start(); t2.Start(); t3.Start(); Console.ReadKey(); } // 每个线程都同时在工作 static void Working() { // 模拟1000次写日志操作 for (int i = 0; i < 1000; i++) { // 异步写文件 Logger.Write(Thread.CurrentThread.Name + " writes a log: " + i + ", on " + DateTime.Now.ToString() + ".\n"); }// 做一些其它的事件 for (int i = 0; i < 1000; i++) { } } }
3个线程同时调用Logger写日志,对于Logger来说,3个线程同时交给了它任务,这种情况就是并发。对于其中一个线程来说,它在工作过程中,在某个时间请求Logger帮它写日志,同时又继续在自己的其它工作,这种情况就是异步
3.并发控制 - 锁
class Program { static bool done; static void Main(string[] args) { new Thread(Go).Start(); // 在新的线程上调用Go Go(); // 在主线程上调用Go Console.ReadKey(); } static void Go() { if (!done) { Thread.Sleep(500); // 模拟耗时操作 Console.WriteLine("Done"); done = true; } } }
输出了两个“Done”,事件被做了两次。由于没有控制好并发,这就出现了线程的安全问题,无法保证数据的状态。
要解决这个问题,就需要用到锁(Lock,也叫排它锁或互斥锁)。使用lock语句,可以保证共享数据只能同时被一个线程访问。lock的数据对象要求是不能null的引用类型的对象,所以lock的对象需保证不能为空。为此需要创建一个不为空的对象来使用锁,修改一下上面的代码如下:
class Program { static bool done; static object locker = new object(); // !! static void Main(string[] args) { new Thread(Go).Start(); // 在新的线程上调用Go Go(); // 在主线程上调用Go Console.ReadKey(); } static void Go() { lock (locker) { if (!done) { Thread.Sleep(500); // Doing something. Console.WriteLine("Done"); done = true; } } } }
输出了一个Done
使用锁,我们解决了问题。但使用锁也会有另外一个线程安全问题,那就是“死锁”,死锁的概率很小,但也要避免。保证“上锁”这个操作在一个线程上执行是避免死锁的方法之一,这种方法在下文案例中会用到。
4.线程的信号机制
有时候你需要一个线程在接收到某个信号时,才开始执行,否则处于等待状态,这是一种基于信号的事件机制。.NET框架提供一个ManualResetEvent类来处理这类事件,它的 WaiOne 实例方法可使当前线程一直处于等待状态,直到接收到某个信号。它的Set方法用于打开发送信号。下面是一个信号机制的使用示例:
static void Main(string[] args) { var signal = new ManualResetEvent(false); new Thread(() => { Console.WriteLine("Waiting for signal..."); signal.WaitOne(); signal.Dispose(); Console.WriteLine("Got signal!"); }).Start(); Thread.Sleep(2000); signal.Set();// 打开“信号” Console.ReadKey(); }
当执行Set方法后,信号保持打开状态,可通过Reset方法将其关闭,若不再需要,通过Dispose将其释放。如果预期的等待时间很短,可以用ManualResetEventSlim代替ManualResetEvent,前者在等待时间较短时性能更好。信号机制非常有用
5.线程池中的线程
线程池中的线程是由CLR来管理的。在下面两种条件下,线程池能起到最好的效用:
- 任务运行的时候比较短(<250ms),这样CLR可以充分调配现有的空闲线程来处理该任务;
- 大量时间处于等待(或阻塞)的任务不去支配线程池的线程。
要使用线程中的线程,主要有下面两种方式:
// 方式1:Task.Run,.NET Framework 4.5 才有 Task.Run (() => Console.WriteLine ("Hello from the thread pool")); // 方式2:ThreadPool.QueueUserWorkItem ThreadPool.QueueUserWorkItem (t => Console.WriteLine ("Hello from the thread pool"));
线程池使得线程可以充分有效地被使用,减少了任务启动的延迟。但是不是所有的情况都适合使用线程池中的线程,比如下面要讲的日志案例 - 异步写文件。
这里讲线程池,是为了让大家大致了解什么时候用线程池中的线程,什么时候不用。即,耗时长或有阻塞情况的不用线程池中的线程。
创建不走线程池中的线程,可以直接通过new Thread来创建,也可以通过下面的代码来创建:
Task task = Task.Factory.StartNew (() => ...,TaskCreationOptions.LongRunning);// 注意必须带TaskCreationOptions.LongRunning参数