单例模式在多线程中的使用情况

废话不多说,直接上代码:

class MyThreadScopeData{

private MyThreadScopeData(){}

private static MyThreadScopeData instance;

//单例设计模式

public static MyThreadScopeData getInstance(){

if(instance ==null){

instance = new MyThreadScopeData();

}

return instance;

}

}

上述代码中,如果直接用于多线程中是存在问题的,比如线程A调用MyThreadScopeData.getInstance()获取MyThreadScopeData对象,执行到 instance = new MyThreadScopeData();还没返回的时候恰好这时候线程B也来调用MyThreadScopeData.getInstance(),执行了 instance = new MyThreadScopeData();这时候则线程B创建的对象会覆盖线程A创建的对象。所以在线程A中的MyThreadScopeData对象其实已经发生了变化,在实际操作过程中会存在问题。如何避免这种情况呢,就要用到线程中的共享变量问题了,这就要涉及到对ThreadLocal类的使用。这时可以将上面的代码修改如下:

class MyThreadScopeData{

private MyThreadScopeData(){}

//单例设计模式

//定义ThreadLocal

private static ThreadLocal<MyThreadScopeData> map = new ThreadLocal<MyThreadScopeData>();

public static MyThreadScopeData getThreadInstance(){

MyThreadScopeData instance = map.get();

if(instance ==null){

instance = new MyThreadScopeData();

map.set(instance);

}

return instance;

}

}

在单例类中定义一个ThreadLocal对象用于存储这个类本身的对象,当线程A调用MyThreadScopeData getThreadInstance()方法获取MyThreadScopeData
对象的时候,首先从ThreadLocal中获取保存在线程A中的MyThreadScopeData
对象,如果没有,则创建一个新的MyThreadScopeData
对象,将此对象保存在ThreadLocal对象中,然后返回MyThreadScopeData 对象;当线程B调用MyThreadScopeData
getThreadInstance()方法获取MyThreadScopeData 对象的时候,流程和线程A调用MyThreadScopeData getThreadInstance()方法一样。此时线程A和线程B各自保存和操作自己线程范围内的MyThreadScopeData
对象和数据。这就做到了线程内部的数据是共享的,而线程与线程之间的数据是独立的。

单例模式在多线程中的使用情况

时间: 2024-08-11 07:33:14

单例模式在多线程中的使用情况的相关文章

如何保证单例模式在多线程中的线程安全性

对大数据.分布式.高并发等知识的学习必须要有多线程的基础.这里讨论一下如何在多线程的情况下设计单例模式.在23中设计模式中单例模式是比较常见的,在非多线程的情况下写单例模式,考虑的东西会很少,但是如果将多线程和单例模式结合起来,考虑的事情就变多了,如果使用不当(特别是在生成环境中)就会造成严重的后果.所以如何使单例模式在多线程中是安全的显得尤为重要,下面介绍各个方式的优缺点以及可用性: 1.立即加载(饿汉模式) 立即加载模式就是在调用getInstance()方法前,实例就被创建了,例: pub

单例模式与多线程

概述 关于一般单例模式的创建和分析在我的另一篇博客<Java设计模式--单件模式>中有详细说明.只是在上篇博客中的单例是针对于单线程的操作,而对于多线程却并不适用,本文就从单例模式与多线程安全的角度出发,讲解单例模式在多线程中应该如何被使用. 版权说明 著作权归作者所有. 商业转载请联系作者获得授权,非商业转载请注明出处. 本文作者:Coding-Naga 发表日期: 2016年4月6日 本文链接:http://blog.csdn.net/lemon_tree12138/article/det

Java多线程核心技术(五)单例模式与多线程

本文只需要考虑一件事:如何使单例模式遇到多线程是安全的.正确的 1.立即加载 / "饿汉模式" 什么是立即加载?立即加载就是使用类的时候已经将对象创建完毕,常见的实现办法就是直接 new 实例化. public class MyObject { private static MyObject myObject = new MyObject(); public MyObject(){ } public static MyObject getInstance(){ return myObj

单例模式是设计模式中最简单的形式之一

单例模式是设计模式中最简单的形式之一.这一模式的目的是使得类的一个对象成为系统中的唯一实例.要实现这一点,可以从客户端对其进行实例化开始.因此需要用一种只允许生成对象类的唯一实例的机制,"阻止"所有想要生成对象的访问.使用工厂方法来限制实例化过程.这个方法应该是静态方法(类方法),因为让类的实例去生成另一个唯一实例毫无意义 意图: 保证一个类仅有一个实例,并提供一个访问它的全局访问点. 适用性: 当类只能有一个实例而且客户可以从一个众所周知的访问点访问它时. 当这个唯一实例应该是通过子

浅淡java单例模式结合多线程测试

本人才疏学浅,正好利用博客这个平台整理下思路 使用单例模式简单来说生成对象时属性都一样,即你new一百次,通过方法得到的结果都一样(比如获取静态资源文件,工具类等). 所以就没必要生成多个对象浪费服务器内存,他和静态类又不同,因为单例本质也是对象系统,长期不使用,也会给cg清除.但是静态类不同,静态类的成员变量和有静态方法会在程序的整个生命周期存在,比如在服务器内在中加载后服务器不关,就会一直存在,同理的有servlet的ServletContext对象和jsp的application对象 单例

c#语言-多线程中的锁系统

介绍 平常在多线程开发中,总避免不了线程同步.这次就对net多线程中的锁系统做个简单描述. 目录 一:lock.Monitor 1:基础. 2: 作用域. 3:字符串锁. 二: mutex 三:Semaphore 四:总结 一:lock.Monitor 1:基础 Lock是Monitor语法糖简化写法.Lock在IL会生成Monitor. //======Example 1===== string obj = "helloworld"; lock (obj) { Console.Wri

谨慎使用多线程中的fork

前言 在单核时代,大家所编写的程序都是单进程/单线程程序.随着计算机硬件技术的发展,进入了多核时代后,为了降低响应时间,重复充分利用多核cpu的资源,使用多进程编程的手段逐渐被人们接受和掌握.然而因为创建一个进程代价比较大,多线程编程的手段也就逐渐被人们认可和喜爱了. 记得在我刚刚学习线程进程的时候就想,为什么很少见人把多进程和多线程结合起来使用呢,把二者结合起来不是更好吗?现在想想当初真是too young too simple,后文就主要讨论一下这个问题. 进程与线程模型 进程的经典定义就是

多线程 中 对多次初始化问题解决方案

今天在看MSDN 库源代码时发现了一个类 LazyInitializer.EnsureInitialized 并行计算时用到的. MSdn代码 // Used to hold any exceptions encountered during action processing ConcurrentQueue<Exception> exceptionQ = null; // will be lazily initialized if necessary // This is more effi

多线程中的信号机制--signwait()函数【转】

本文转载自:http://blog.csdn.net/yusiguyuan/article/details/14237277 在Linux的多线程中使用信号机制,与在进程中使用信号机制有着根本的区别,可以说是完全不同.在进程环境中,对信号的处理是,先注册信号处理函数,当信号异步发生时,调用处理函数来处理信号.它完全是异步的(我们完全不知到信号会在进程的那个执行点到来!).然而信号处理函数的实现,有着许多的限制:比如有一些函数不能在信号处理函数中调用:再比如一些函数read.recv等调用时会被异