动态规划求解最长递增子序列的长度

一,问题描述

给定一个序列,求解它的最长 递增 子序列 的长度。比如: arr[] = {3,1,4,1,5,9,2,6,5}   的最长递增子序列长度为4。即为:1,4,5,9

二,算法分析

有两种方式来求解,一种是转化为LCS问题。即,首先对数组排序,将排序后的结果存储在辅助数组中。排序时间复杂度O(NlogN),排序后的数组与原数组组成了LCS(N,N)问题。解决LCS问题的时间复杂度为O(N^2),故整个算法的时间复杂度为O(N^2),空间复杂度为O(N)

另一种方式是直接用DP求解,算法如下:时间复杂度为O(N^2)

①最优子问题

设lis[i] 表示索引为 [0...i] 上的数组上的 最长递增子序列。初始时,lis[i]=1,注意,在DP中,初始值是很重要的,它是整个算法运行正确的关键。而初始值 则可以 通过 画一个小的示例来 确定。

当 arr[i] > arr[j],lis[i] = max{lis[j]}+1 ;其中,j 的取值范围为:0,1...i-1

当 arr[i] < arr[j],lis[i] = max{lis[j]} ;其中,j 的取值范围为:0,1...i-1

②重叠子结构

从上面可以看出,计算 lis[i]时,需要计算 lis[j],其中 j < i,这说明有重叠子问题。借用网路中一张图如下:

                     lis(4)
                 /       |               lis(3)      lis(2)    lis(1)
        /     \        /
  lis(2)  lis(1)   lis(1)
  /
lis(1)

而初始值 则可以 通过 画一个小的示例来 确定。

参考资料:

求解两个字符串的最长公共子序列

动态规划(3)-最长递增子序列

三,代码实现

错误版本1:

 1     private static int lis(int[] arr, int length){
 2         int lis[] = new int[length];
 3
 4         //init
 5         for(int i = 0; i < length; i++)
 6             lis[i] = 1;
 7
 8         for(int i = 1; i < length; i++)
 9         {
10             for(int j = 0; j < i; j++)
11             {
12
13                 if(arr[i] > arr[j])
14                 {
15                     if(lis[j] + 1 > lis[i])
16                         lis[i] = lis[j] + 1;
17                 }
18                 else{
19                     if(lis[j] > lis[i])
20                         lis[i] = lis[j];
21                 }
22             }
23         }
24         return lis[length - 1];
25     }

第13行if语句会导致bug,arr[i]要大于 j belongs to  0,1,...i-1 中所有的 arr[j]中的最大值,并且 lis[i] 是该最大值 arr[j] 所对应的 lis[j] +1,而不是某个其他的arr[j] 对应的 lis[j]+1

正确完整版本:

public class LIS {
    public static int lis(int[] arr){
        if(arr == null || arr.length == 0)
            return 0;
        return lis(arr, arr.length);
    }

    private static int lis(int[] arr, int length){
        int lis[] = new int[length];

        //init
        for(int i = 0; i < length; i++)
            lis[i] = 1;

        for(int i = 1; i < length; i++)
        {
            for(int j = 0; j < i; j++)
            {
//                lis[i]=max{lis[i-1], lis[i-1]+1}
                if(arr[i] > arr[j] && lis[j] + 1 > lis[i])
                    lis[i] = lis[j] + 1;
            }
        }

        int max = lis[0];
        for(int i = 1; i < length; i++)
            if(max < lis[i])
                max = lis[i];
        return max;
    }

    public static void main(String[] args) {
        int[] arr = {3,1,4,1,5,9,2,6,5};
        int result = lis(arr);
        System.out.println(result);
    }
}
时间: 2024-10-19 10:02:29

动态规划求解最长递增子序列的长度的相关文章

动态规划之最长递增子序列问题详解

最近重新开始看动态规划,动态规划算法的有效性依赖于问题本身所具有的两个重要性质:最优子结构性质和子问题重叠性质. 1.最优子结构:当问题的最优解包含了其子问题的最优解时,称该问题具有最优子结构性质. 2.重叠子问题:在用递归算法自顶向下解问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次.动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只解一次,而后将其解保存在一个表格中,在以后尽可能多地利用这些子问题的解. (二).动态规划算法的基本步骤设计一个标准的动态规划算法,通常

【算法导论之七】动态规划求解最长公共子序列

一.动态规划的概念 动态规划(Dynamic Programming)是通过组合子问题的解而解决整个问题的.分治算法是指将问题划分成一些独立的子问题,递归地求解各子问题,然后合并子问题的解而得到原始问题的解,与此不同,动态规划适用于子问题不是独立的情况,也就是各个子问题包含公共的子问题.在这种情况下,采用分治法会做许多不必要的工作,即重复地求解公共地子问题.动态规划算法对每个子问题只求解一次,将其结果保存在一张表中,从而避免每次遇到各个子问题时重新计算答案. 动态规划通常应用于最优化问题.此类问

动态规划之最长递增子序列

题目一:给定一个长度为N的数组,找出一个最长的单调递增子序列(不一定连续,但是顺序不能乱).并返回单调递增子序列的长度. 例如:给定一个长度为8的数组A{1,3,5,2,4,6,7,8},则其最长的单调递增子序列为{1,2,4,6,7,8},我们返回其长度6. 题目二:在题目一的基础上,我们要返回该子序列中的元素.例如,给定一个长度为8的数组A{1,3,5,2,4,6,7,8},我们返回的是单调递增子序列{1,2,4,6,7,8}. 解析:我们使用动态规划的思想来解决此问题,假设给定的数组为nu

求数组中最长递增子序列的长度

个人信息:就读于燕大本科软件工程专业 目前大三; 本人博客:google搜索"cqs_2012"即可; 个人爱好:酷爱数据结构和算法,希望将来从事算法工作为人民作出自己的贡献; 编程语言:C++ ; 编程坏境:Windows 7 专业版 x64; 编程工具:vs2008; 制图工具:office 2010 powerpoint; 硬件信息:7G-3 笔记本; 真言 怒冲北京,为理想前行. 题目 解法 使用工具栈单枝遍历数组(思路源于工具栈可以双枝遍历二叉树的方法) 栈里存放的是数组的下

动态规划之最长递增子序列(LIS)

       在一个已知的序列{ a1,a2,--am}中,取出若干数组成新的序列{ ai1, ai2,-- aim},其中下标 i1,i2, --im保持递增,即新数列中的各个数之间依旧保持原数列中的先后顺序,那么称{ ai1, ai2,--aim}为原序列的一个子序列.若在子序列中,当下标 ix > iy时,aix > aiy,那么称其为原序列的一个递增子序列.最长递增子序列问题就是在一个给定的原序列中,求得其最长递增子序列的长度.       求最长递增子序列的递推公式为:      

动态规划求解最长公共子序列

动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解.与分治法不同的是,适合于用动态规划求解的问题,经分解得到的子问题往往不是互相独立的.若用分治法来解决这类问题,则分解得到的子问题数目太多,以至于最后解决原问题需要耗费指数时间.然而,不同子问题的数目常常只有多项式量级.在用分治法求解时,有些子问题被重复计算了许多次.如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,从而得到多项式

动态规划求解最长公共子序列问题

LCS是求两个字符串,最长的公共部分,中间可以间隔其他的元素.例如,字符串s1=''mzjawxu'',s2=''xmjyauz'',仔细分析下,大体可以看出最长公共子序列是''mjau'',我们需要一套科学严格的方法来求解.这个问题是DP问题(动态规划问题).动态规划问题:就是当前问题的求解依赖于上一个子问题,上一个子问题又依赖于前一个子问题,子问题无限递归. 记: Xi=﹤x1,?,xi﹥即X序列的前i个字符 (1≤i≤m)(前缀) Yj=﹤y1,?,yj﹥即Y序列的前j个字符 (1≤j≤n

[算法]动态规划之最长递增子序列

最长递增子序列 #include<stdio.h> #include<stdlib.h> #include<time.h> #include<string.h> #define N 4 int solve(int *array, int n) { int *dp = (int *)malloc(n * sizeof(int)); int i; int j; int result; bzero((void *)dp, n * sizeof(int)); dp[

最长递增子序列(LIS)求解

问题描述 最长递增子序列也称 "最长上升子序列",简称LIS ( longest increasing subsequence).设L=<a1,a2,-,an>是n个不同的实数的序列,L的递增子序列是这样一个子序列Lis=<ak1,ak2,-,akm>,其中k1<k2<-<km且ak1<ak2<-<akm.求最大的m值. 如:求一个一维数组arr[i]中的最长递增子序列的长度,如在序列{ 7, 1, 6, 5, 3, 4, 8