[Python数据挖掘]第5章、挖掘建模(上)

一、分类和回归

回归分析研究的范围大致如下:

1、逻辑回归

#逻辑回归 自动建模
import pandas as pd
from sklearn.linear_model import LogisticRegression as LR
from sklearn.linear_model import RandomizedLogisticRegression as RLR 

#参数初始化
data = pd.read_excel(‘data/bankloan.xls‘)
x = data.iloc[:,:8].as_matrix()        #loc和iloc是Pandas中用于提取数据的函数
y = data.iloc[:,8].as_matrix()
#复制一份,用作对比
x1=x
y1=y

rlr = RLR() #建立随机逻辑回归模型,筛选变量
rlr.fit(x, y) #训练模型
rlr.get_support() #获取特征筛选结果,也可以通过.scores_方法获取各个特征的分数
print(u‘通过随机逻辑回归模型筛选特征结束。‘)
print(u‘有效特征为:%s‘ % ‘,‘.join(data.iloc[:,0:8].columns[rlr.get_support()]))    #原代码此处报错
x = data[data.iloc[:,0:8].columns[rlr.get_support()]].as_matrix() #筛选好特征

lr = LR() #建立逻辑回归模型
lr.fit(x, y) #用筛选后的特征数据来训练模型
print(u‘逻辑回归模型训练结束。‘)
print(u‘筛选特征后,模型的平均正确率为:%s‘ % lr.score(x, y)) #给出模型的平均正确率,本例为81.4%

lr1 = LR()
lr1.fit(x1, y1) #直接用原始数据来训练模型
print(u‘未筛选特征,模型的平均正确率为:%s‘ % lr1.score(x1, y1)) 
通过随机逻辑回归模型筛选特征结束。
有效特征为:工龄,地址,负债率,信用卡负债
逻辑回归模型训练结束。
筛选特征后,模型的平均正确率为:0.814285714286
未筛选特征,模型的平均正确率为:0.805714285714

2、决策树

#使用ID3决策树算法预测销量高低
import pandas as pd

#参数初始化
data = pd.read_excel(‘data/sales_data.xls‘, index_col = ‘序号‘) #导入数据

#数据是类别标签,要将它转换为数据
#用1来表示“好”、“是”、“高”这三个属性,用-1来表示“坏”、“否”、“低”
data.replace([‘好‘,‘是‘,‘高‘,‘坏‘,‘否‘,‘低‘],[1,1,1,-1,-1,-1],inplace=True)
x = data.iloc[:,:3]
y = data.iloc[:,3]

from sklearn.tree import DecisionTreeClassifier as DTC
dtc = DTC(criterion=‘entropy‘) #建立决策树模型,基于信息熵
dtc.fit(x, y) #训练模型

#导入相关函数,可视化决策树。
#导出的结果是一个dot文件,需要安装Graphviz才能将它转换为pdf或png等格式。
from sklearn.tree import export_graphviz
x = pd.DataFrame(x)
from sklearn.externals.six import StringIO
x = pd.DataFrame(x)
with open("tree.dot", ‘w‘) as f:
  f = export_graphviz(dtc, feature_names = x.columns, out_file = f)

运行上述代码,生成tree.dot文件,对其稍作修改

得到决策树的可视化

3、人工神经网络

#使用神经网络算法预测销量高低
import pandas as pd
from sklearn.metrics import confusion_matrix #导入混淆矩阵函数
import matplotlib.pyplot as plt #导入作图库
from keras.models import Sequential
from keras.layers.core import Dense, Activation

#作图函数
def cm_plot(y, yp):
    cm = confusion_matrix(y, yp) #混淆矩阵
    plt.matshow(cm, cmap=plt.cm.Greens) #画混淆矩阵图,配色风格使用cm.Greens,更多风格请参考官网。
    plt.colorbar() #颜色标签

    for x in range(len(cm)): #数据标签
        for y in range(len(cm)):
            plt.annotate(cm[x,y], xy=(x, y), horizontalalignment=‘center‘, verticalalignment=‘center‘)

    plt.ylabel(‘True label‘) #坐标轴标签
    plt.xlabel(‘Predicted label‘) #坐标轴标签
    return plt

#参数初始化
data = pd.read_excel(‘data/sales_data.xls‘, index_col = ‘序号‘) #导入数据

#数据是类别标签,要将它转换为数据
#用1来表示“好”、“是”、“高”这三个属性,用0来表示“坏”、“否”、“低”
data.replace([‘好‘,‘是‘,‘高‘,‘坏‘,‘否‘,‘低‘],[1,1,1,0,0,0],inplace=True)
x = data.iloc[:,:3]
y = data.iloc[:,3]

model = Sequential() #建立模型
model.add(Dense(input_dim = 3, output_dim = 10))
model.add(Activation(‘relu‘)) #用relu函数作为激活函数,能够大幅提供准确度
model.add(Dense(input_dim = 10, output_dim = 1))
model.add(Activation(‘sigmoid‘)) #由于是0-1输出,用sigmoid函数作为激活函数

model.compile(loss = ‘binary_crossentropy‘, optimizer = ‘adam‘)
#编译模型。由于我们做的是二元分类,所以我们指定损失函数为binary_crossentropy,以及模式为binary
#另外常见的损失函数还有mean_squared_error、categorical_crossentropy等,请阅读帮助文件。
#求解方法我们指定用adam,还有sgd、rmsprop等可选

model.fit(x, y, nb_epoch = 1000, batch_size = 10) #训练模型,学习一千次
yp = model.predict_classes(x).reshape(len(y)) #分类预测

cm_plot(y,yp).show() #显示混淆矩阵可视化结果

二、评价指标

三、聚类分析

#-*- coding: utf-8 -*-
#使用K-Means算法聚类消费行为特征数据
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans

#参数初始化
data = pd.read_excel(‘data/consumption_data.xls‘, index_col = ‘Id‘) #读取数据
outputfile = ‘tmp/data_type.xls‘ #保存结果的文件名

k = 3 #聚类的类别
iteration = 500 #聚类最大循环次数
data_zs = 1.0*(data - data.mean())/data.std() #数据标准化

model = KMeans(n_clusters = k, n_jobs = 4, max_iter = iteration) #分为k类,并发数4
model.fit(data_zs) #开始聚类

#简单打印结果
r1 = pd.Series(model.labels_).value_counts() #统计各个类别的数目
r2 = pd.DataFrame(model.cluster_centers_) #找出聚类中心
r = pd.concat([r2, r1], axis = 1) #横向连接(0是纵向),得到聚类中心对应的类别下的数目
r.columns = list(data.columns) + [u‘类别数目‘] #重命名表头
print(r)

#详细输出原始数据及其类别
r = pd.concat([data, pd.Series(model.labels_, index = data.index)], axis = 1)  #详细输出每个样本对应的类别
r.columns = list(data.columns) + [u‘聚类类别‘] #重命名表头
r.to_excel(outputfile) #保存结果

def density_plot(data,title): #自定义作图函数
    plt.figure()
    for i in range(len(data.iloc[0])):#逐列作图
        (data.iloc[:,i]).plot(kind=‘kde‘, label=data.columns[i],linewidth = 2)
    plt.ylabel(‘密度‘)
    plt.xlabel(‘人数‘)
    plt.title(‘聚类类别%s各属性的密度曲线‘%title)
    plt.legend()
    return plt

def density_plot(data): #自定义作图函数
    p = data.plot(kind=‘kde‘, linewidth = 2, subplots = True, sharex = False)
    [p[i].set_ylabel(u‘密度‘) for i in range(k)]
    plt.legend()
    return plt

pic_output = ‘tmp/pd_‘ #概率密度图文件名前缀
for i in range(k):
  density_plot(data[r[u‘聚类类别‘]==i]).savefig(u‘%s%s.png‘ %(pic_output, i))

聚类效果评价

聚类可视化——TSNE

#代码接上面
from sklearn.manifold import TSNE

tsne = TSNE()
tsne.fit_transform(data_zs) #进行数据降维
tsne = pd.DataFrame(tsne.embedding_, index = data_zs.index) #转换数据格式

#不同类别用不同颜色和样式绘图
d = tsne[r[u‘聚类类别‘] == 0]
plt.plot(d[0], d[1], ‘r.‘)
d = tsne[r[u‘聚类类别‘] == 1]
plt.plot(d[0], d[1], ‘go‘)
d = tsne[r[u‘聚类类别‘] == 2]
plt.plot(d[0], d[1], ‘b*‘)
plt.show()

原文地址:https://www.cnblogs.com/little-monkey/p/10312045.html

时间: 2024-08-30 09:28:31

[Python数据挖掘]第5章、挖掘建模(上)的相关文章

[Python数据挖掘]第6章、电力窃漏电用户自动识别

一.背景与挖掘目标 相关背景自查 二.分析方法与过程 1.EDA(探索性数据分析) 1.分布分析 2.周期性分析 2.数据预处理 1.数据清洗 过滤非居民用电数据,过滤节假日用电数据(节假日用电量明显低于工作日)  2.缺失值处理 #拉格朗日插值代码 import pandas as pd #导入数据分析库Pandas from scipy.interpolate import lagrange #导入拉格朗日插值函数 data = pd.read_excel('data/missing_dat

「数据挖掘入门系列」挖掘建模之分类与预测–逻辑回归

拿电商行业举例,经常会遇到以下问题: 如果基于商品的历史销售情况,以及节假日.气候.竞争对手等影响因素,对商品的销量进行趋势预测? 如何预测未来一段时间哪些客户会流失,哪些客户可能会成为VIP用户? 如果预测一种新商品的销售量,以及哪种类型的客户会比较喜欢? 除此之外,运营部门需要通过数据分析来了解具有某些特征的客户的消费习惯,管理人员希望了解下一个月的销售收入等,这些都是分类与预测的日志. 分类和预测是预测问题的两种主要类型. 分类主要是预测分类标号(离散值) 预测主要是建立连续值函数模型 挖

[Python数据挖掘]第4章、数据预处理

数据预处理主要包括数据清洗.数据集成.数据变换和数据规约,处理过程如图所示. 一.数据清洗 1.缺失值处理:删除.插补.不处理 ## 拉格朗日插值代码(使用缺失值前后各5个未缺失的数据建模) import pandas as pd #导入数据分析库Pandas from scipy.interpolate import lagrange #导入拉格朗日插值函数 inputfile = '../data/catering_sale.xls' #销量数据路径 outputfile = '../tmp

[Python数据挖掘]第2章、Python数据分析简介

1.Python数据结构 2.Numpy数组 import numpy as np #一般以np作为numpy的别名 a = np.array([2, 0, 1, 5]) #创建数组 print(a) #输出数组 print(a[:3]) #引用前三个数字(切片) print(a.min()) #输出a的最小值 a.sort() #将a的元素从小到大排序,此操作直接修改a,因此这时候a为[0, 1, 2, 5] b= np.array([[1, 2, 3], [4, 5, 6]]) #创建二维数

Python3数据分析与挖掘建模实战视频

第1章 课程介绍[赠送相关电子书+随堂代码] 本章首先介绍本课程是什么,有什么特色,能学习到什么,内容如何安排,需要什么基础,是否适合学习这门课程等.然后对数据分析进行概述,让大家对数据分析的含义和作用有一个整体的认知,让大家对自己接下来要做的事情,有一个基本的概念与了解.... 1-1 课程导学 1-2 数据分析概述 第2章 数据获取 数据从哪里来?怎么来?这一章,我们会介绍数据获取的一般手段.主要包括数据仓库.抓取.资料填写.日志.埋点.计算等手段.同时,我们也会介绍几个常用的数据网站,供大

Python3数据分析与挖掘建模实战

Python3数据分析与挖掘建模实战网盘地址:https://pan.baidu.com/s/1lSjsPL1dskDbEsceNTvstg 密码: wdts备用地址(腾讯微云):https://share.weiyun.com/5AQkJBC 密码:bj2veb 流程完整:从头到尾经历一次完整的流程让你弄清数据分析与建模的来龙去脉 案例丰富:几乎每个知识点都配有具体的小案例在实战中掌握岗位要求的技能与技巧 知识全面:从基本概念.公式原理.实用技巧到背后的思维方法,掌握数据分析每 第1章 课程介

【Python数据挖掘课程】六.Numpy、Pandas和Matplotlib包基础知识

前面几篇文章采用的案例的方法进行介绍的,这篇文章主要介绍Python常用的扩展包,同时结合数据挖掘相关知识介绍该包具体的用法,主要介绍Numpy.Pandas和Matplotlib三个包.目录:        一.Python常用扩展包        二.Numpy科学计算包        三.Pandas数据分析包        四.Matplotlib绘图包 前文推荐:       [Python数据挖掘课程]一.安装Python及爬虫入门介绍       [Python数据挖掘课程]二.K

python数据挖掘领域工具包 - wentingtu - 博客园

python数据挖掘领域工具包 - wentingtu - 博客园 python数据挖掘领域工具包 原文:http://qxde01.blog.163.com/blog/static/67335744201368101922991/ Python在科学计算领域,有两个重要的扩展模块:Numpy和Scipy.其中Numpy是一个用python实现的科学计算包.包括: 一个强大的N维数组对象Array: 比较成熟的(广播)函数库: 用于整合C/C++和Fortran代码的工具包: 实用的线性代数.傅

ROS机器人程序设计(原书第2版)补充资料 (柒) 第七章 3D建模与仿真 urdf Gazebo V-Rep Webots Morse

ROS机器人程序设计(原书第2版)补充资料 (柒) 第七章 3D建模与仿真 urdf Gazebo V-Rep Webots Morse 书中,大部分出现hydro的地方,直接替换为indigo或jade或kinetic,即可在对应版本中使用. 提供ROS接口的3D软件比较多,本章以最典型的Gazebo介绍为主,从Player/Stage/Gazebo发展而来,现在独立的机器人仿真开发环境,目前2016年最新版本Gazebo7.1配合ROS(kinetic)使用. 补充内容:http://blo