mongodb 增删查改

安装模块 pip install pymongo

MongoClient对象:用于与MongoDB服务器建立连接

  • client=MongoClient(‘主机ip‘,端口)

DataBase对象:对应着MongoDB中的数据库

  • db=client.数据库名称

Collection对象:对应着MongoDB中的集合

  • col=db.集合名称

Cursor对象:查询方法find()返回的对象,用于进行多行数据的遍历

  • 当调用集合对象的find()方法时,会返回Cursor对象
    结合for...in...遍历cursor对象

主要方法:

  • insert_one:加入一条文档对象
  • insert_many:加入多条文档对象
  • find_one:查找一条文档对象
  • find:查找多条文档对象
  • update_one:更新一条文档对象
  • update_many:更新多条文档对象
  • delete_one:删除一条文档对象
  • delete_many:删除多条文档对象

插入方法:

  • insert_one() 传入一个字典,表示插入一个文档
  • insert_many() 传入一个列表,列表的元素为字典,插入多条文档
from pymongo import *

def insert():
         # 1 创建连接对象
         client = MongoClient(host="localhost", port=27017)
         # 2 获取数据库,
         # 如果这个数据库不存在,就在内存中虚拟创建
         # 当在库里创建集合的时候,就会在物理真实创建这个数据库
         db = client.demo    # 使用demo数据库
         # 向stu集合插入数据
         # 插入一条
         db.stu.insert_one({"name": "zs", "age": })
         # 插入多条
         db.stu.insert_many([{"name": 1}, {"name": }])

查询方法:

 from pymongo import *
 ‘‘‘
 查询方法:
     find_one()返回满足条件的文档集中第一条数据,类型为字典
                 如果没有查询结果返回None
     方法find()返回满足条件的所有文档,类型为Cursor对象,可以使用for...in遍历,每项为字典对象
             如果没有查询结果返一个空的Cursor对象
 ‘‘‘
 def select():
         # 1 创建连接对象
         client = MongoClient(host="localhost", port=27017)
         # 2 获取数据库,
         # 如果这个数据库不存在,就在内存中虚拟创建
         # 当在库里创建集合的时候,就会在物理真实创建这个数据库
         db = client.demo    # 使用demo数据库
         # 从stu查询数据
         # 查询一条,返回一个字典,如果没有结果返回None
         res = db.stu.find_one({"age": 18})
         print(res)
         # 查询全部结果,返回一个Cursor可迭代对象,每一个元素是字典
         # 如果没有查询结果会返回一个空的Cursor对象
         res = db.stu.find({"age": {"$gt": 18}})
         print(res)

修改方法:

update_one()修改满足条件的文档集中的第一条文档
update_many()修改满足条件的文档集中的所有文档
注意:使用$set操作符修改特定属性的值,否则会修改整个文档
from pymongo import *
 ‘‘‘
 修改方法:
     update_one()修改满足条件的文档集中的第一条文档
     update_many()修改满足条件的文档集中的所有文档
     注意:使用$set操作符修改特定属性的值,否则会修改整个文档
 ‘‘‘
 def update():
         # 1 创建连接对象
         client = MongoClient(host="localhost", port=27017)
         # 2 获取数据库,
         # 如果这个数据库不存在,就在内存中虚拟创建
         # 当在库里创建集合的时候,就会在物理真实创建这个数据库
         db = client.demo    # 使用demo数据库
         # 修改数据
         # 修改第一条符合条件的数据,传入条件和修改结果
         db.stu.update_one({"age": 18},{"$set": {"age": 100}})  # 把年龄是18的第一条年龄改成100
         # 所有符合条件数据都修改
         # db.stu.update_many({"age": 18},{"$set": {"age": 100}}) # 年龄18的所有数据年龄改成100

删除方法:

delete_one()删除满足条件的文档集中第一条文档
delete_many()删除满足条件的所有文档
注意:使用$set操作符修改特定属性的值,否则会修改整个文档
from pymongo import *
 ‘‘‘
 删除方法:
     delete_one()删除满足条件的文档集中第一条文档
     delete_many()删除满足条件的所有文档
     注意:使用$set操作符修改特定属性的值,否则会修改整个文档
 ‘‘‘
def delete():

         # 1 创建连接对象
         client = MongoClient(host="localhost", port=27017)
         # 2 获取数据库,
         # 如果这个数据库不存在,就在内存中虚拟创建
         # 当在库里创建集合的时候,就会在物理真实创建这个数据库
         db = client.demo    # 使用demo数据库
         # 修改数据
         # 修改第一条符合条件的文档删除
         db.stu.delete_one({"age": 18})  # 把年龄是18的第一条文档删除
         # 所有符合条件数据都删除
         db.stu.delete_many({"age": 18}) # 年龄18的所有文档删除

一、比较运算:=,!= (‘$ne‘) ,> (‘$gt‘) ,< (‘$lt‘) ,>= (‘$gte‘)?,<=?(‘$lte‘)

=,!= (‘$ne‘) ,> (‘$gt‘) ,< (‘$lt‘) ,>= (‘$gte‘) ,<= (‘$lte‘)
#1、select * from db1.user where id = 3
db.user.find({"_id":3})

#2、select * from db1.user where id != 3
db.user.find({"_id":{"$ne":3}})

#3、select * from db1.user where id > 3
db.user.find({"_id":{"$gt":3}})

#4、select * from db1.user where age < 3
db.user.find({"age":{"$lt":3}})

#5、select * from db1.user where id >= 3
db.user.find({"_id":{"$gte":3}})

#6、select * from db1.user where id <= 3
db.user.find({"_id":{"$lte":3}})

二、逻辑运算:MongoDB中字典内用逗号分隔多个条件是and关系,或者直接用$and,$o,r$not(与或非)

#逻辑运算:$and,$or,$not
#1 select * from db1.user where id >=3 and id <=4;
db.user.find({"_id":{"$gte":3,"$lte":4}})

#2 select * from db1.user where id >=3 and id <=4 and age >=40;
db.user.find({
    "_id":{"$gte":3,"$lte":4},
    "age":{"$gte":40}
})

db.user.find({"$and":[
{"_id":{"$gte":3,"$lte":4}},
{"age":{"$gte":40}}
]})

#3 select * from db1.user where id >=0 and id <=1 or id >=4 or name = "yuanhao";
db.user.find({"$or":[
{"_id":{"$lte":1,"$gte":0}},
{"_id":{"$gte":4}},
{"name":"yuanhao"}
]})

#4 select * from db1.user where id % 2 = 1;
db.user.find({"_id":{"$mod":[2,1]}})

db.user.find({
    "_id":{"$not":{"$mod":[2,1]}}
})

三、成员运算:成员运算无非in和not in,MongoDB中形式为$in , $nin

#1、select * from db1.user where age in (20,30,31);
db.user.find({"age":{"$in":[20,30,31]}})

#2、select * from db1.user where name not in (‘alex‘,‘yuanhao‘);
db.user.find({"name":{"$nin":[‘Stefan‘,‘Damon‘]}})

四、正则:正则定义在/ /内

# MongoDB: /正则表达/i

#1、select * from db1.user where name regexp ‘^j.*?(g|n)$‘;
db.user.find({‘name‘:/^j.*?(g|n)$/i})#匹配规则:j开头、g或n结尾,不区分大小写

五、查看指定字段:0表示不显示1表示显示

#1、select name,age from db1.user where id=3;
db.user.find({‘_id‘:3},{‘_id‘:0,‘name‘:1,‘age‘:1})

#2、select name,age from db1.user where name regexp "^jin.*?(g|n)$";
db.user.find({
    "name":/^jin.*?(g|n)$/i
},
{
    "_id":0,
    "name":1,
    "age":1
}
)

六、对数组的查询:

#查询数组相关
#查hobbies中有dancing的人
db.user.find({
    "hobbies":"dancing"
})
#查看既有dancing爱好又有tea爱好的人
db.user.find({
    "hobbies":{"$all":["dancing","tea"]}
})
#查看第2个爱好为dancing的人
db.user.find({
    "hobbies.2":"dancing"
})
#查看所有人的第2个到第3个爱好
db.user.find(
{},
{
    "_id":0,
    "name":0,
    "age":0,
    "addr":0,
    "hobbies":{"$slice":[1,2]},
}
)

#查看所有人最后两个爱好,第一个{}表示查询条件为所有,第二个是显示条件
db.user.find(
{},
{
    "_id":0,
    "name":0,
    "age":0,
    "addr":0,
    "hobbies":{"$slice":-2},
}
)

#查询子文档有"country":"China"的人
db.user.find(
{
    "addr.country":"China"
}
)

七、对查询结果进行排序:sort() ?1代表升序、-1代表降序

db.user.find().sort({"name":1,})
db.user.find().sort({"age":-1,‘_id‘:1})

八、分页:limit表示取多少个document,skip代表跳过几个document

#这样就做到了分页的效果
db.user.find().limit(2).skip(0)#前两个
db.user.find().limit(2).skip(2)#第三个和第四个
db.user.find().limit(2).skip(4)#第五个和第六个

九、获取数量:count()

#查询年龄大于30的人数
#方式一:
db.user.count({‘age‘:{"$gt":30}}) 

#方式二:
db.user.find({‘age‘:{"$gt":30}}).count()

十、其他:查找所有、去重、查找key为null的项

#1、查找所有
db.user.find() #等同于db.user.find({})
db.user.find().pretty()
#2、去重
db.user.find().distinct()

#3、{‘key‘:null} 匹配key的值为null或者没有这个key
db.t2.insert({‘a‘:10,‘b‘:111})
db.t2.insert({‘a‘:20})
db.t2.insert({‘b‘:null})
db.t2.find({"b":null})#得到的是b这个key的值为null和没有b这个key的文档
{ "_id" : ObjectId("5a5cc2a7c1b4645aad959e5a"), "a" : 20 }
{ "_id" : ObjectId("5a5cc2a8c1b4645aad959e5b"), "b" : null }

1、常规修改操作:

#设数据为{‘name‘:‘武松‘,‘age‘:18,‘hobbies‘:[‘做煎饼‘,‘吃煎饼‘,‘卖煎饼‘],‘addr‘:{‘country‘:‘song‘,‘province‘:‘shandong‘}}
#update db1.user set age=23,name="武大郎" where name="武松";
#1、覆盖式
db.user.update(
    {"name":"武松"},
    {"age":23,"name":"武大郎"}
)
#得到的结果为{"age":23,"name":"武大郎"}

#2、局部修改:$set
db.user.update(
    {"name":"武松"},
    {"$set":{"age":15,"name":"潘金莲"}}
)
#得到的结果为{"name":"潘金莲","age":15,‘hobbies‘:[‘做煎饼‘,‘吃煎饼‘,‘卖煎饼‘]}

#3、改多条:将multi参数设为true
db.user.update(
    {"_id":{"$gte":1,"$lte":2}},
    {"$set":{"age":53,}},
    {"multi":true}
)
#4、有则修改,无则添加:upsert参数设为true
db.user.update(
    {"name":"EGON"},
    {"$set":{"name":"EGON","age":28,}},
    {"multi":true,"upsert":true}
)

#5、修改嵌套文档:将国家改为日本
db.user.update(
    {"name":"潘金莲"},
    {"$set":{"addr.country":"Japan"}}
)

#6、修改数组:将第一个爱好改为洗澡
db.user.update(
    {"name":"潘金莲"},
    {"$set":{"hobbies.1":"洗澡"}}
)

#删除字段:不要爱好了
db.user.update(
    {"name":"潘金莲"},
    {"$unset":{"hobbies":""}}
)

2、加减操作:$inc

#增加和减少$inc
#年龄都+1
db.user.update(
    {},
    {"$inc":{"age":1}},
    {"multi":true}
)
#年龄都-10
db.user.update(
    {},
    {"$inc":{"age":-10}},
    {"multi":true}
)

3、添加删除数组内元祖$push ?$pop ?$pull

  • $push的功能是往现有数组内添加元素
#1、为名字为武大郎的人添加一个爱好read
db.user.update({"name":"武大郎"},{"$push":{"hobbies":"read"}})

#2、为名字为武大郎的人一次添加多个爱好tea,dancing
db.user.update({"name":"武大郎"},{"$push":{
    "hobbies":{"$each":["tea","dancing"]}
}})
  • $pop的功能是按照位置只能从头或从尾即两端删元素,类似于队列。1代表尾,-1代表头
#1、{"$pop":{"key":1}} 从数组末尾删除一个元素

db.user.update({"name":"武大郎"},{"$pop":{
    "hobbies":1}
})

#2、{"$pop":{"key":-1}} 从头部删除
db.user.update({"name":"武大郎"},{"$pop":{
    "hobbies":-1}
})
  • $pull可以自定义条件删除
db.user.update({‘addr.country‘:"China"},{"$pull":{
    "hobbies":"read"}
},
{
    "multi":true
}
)

4、避免重复添加 ?$addToSet?? ?即多个相同元素要求插入时只插入一条

db.urls.insert({"_id":1,"urls":[]})

db.urls.update(
     {"_id":1},
     {
    "$addToSet":{
        "urls":{
        "$each":[
            ‘http://www.baidu.com‘,
            ‘http://www.baidu.com‘,
            ‘http://www.xxxx.com‘
            ]
            }
        }
    }
)

5、了解部分

#1、了解:限制大小"$slice",只留最后n个

db.user.update({"_id":5},{
    "$push":{"hobbies":{
        "$each":["read",‘music‘,‘dancing‘],
        "$slice":-2
    }
    }
})

#2、了解:排序The $sort element value must be either 1 or -1"
db.user.update({"_id":5},{
    "$push":{"hobbies":{
        "$each":["read",‘music‘,‘dancing‘],
        "$slice":-1,
        "$sort":-1
    }
    }
})

#注意:不能只将"$slice"或者"$sort"与"$push"配合使用,且必须使用"$each"

聚合操作:

我们在查询时肯定会用到聚合,在MongoDB中聚合为aggregate,聚合函数主要用到$match $group $avg $project $concat

假设我们的数据库中有这样的数据

from pymongo import MongoClient
import datetime

client=MongoClient(‘mongodb://root:[email protected]:27017‘)
table=client[‘db1‘][‘emp‘]
# table.drop()

l=[
(‘武大郎‘,‘male‘,18,‘20170301‘,‘烧饼检察官‘,7300.33,401,1),
(‘武松‘,‘male‘,78,‘20150302‘,‘公务员‘,1000000.31,401,1),
(‘宋江‘,‘male‘,81,‘20130305‘,‘公务员‘,8300,401,1),
(‘林冲‘,‘male‘,73,‘20140701‘,‘公务员‘,3500,401,1),
(‘柴进‘,‘male‘,28,‘20121101‘,‘公务员‘,2100,401,1),
(‘卢俊义‘,‘female‘,18,‘20110211‘,‘公务员‘,9000,401,1),
(‘高俅‘,‘male‘,18,‘19000301‘,‘公务员‘,30000,401,1),
(‘鲁智深‘,‘male‘,48,‘20101111‘,‘公务员‘,10000,401,1),

(‘史进‘,‘female‘,48,‘20150311‘,‘打手‘,3000.13,402,2),
(‘李逵‘,‘female‘,38,‘20101101‘,‘打手‘,2000.35,402,2),
(‘周通‘,‘female‘,18,‘20110312‘,‘打手‘,1000.37,402,2),
(‘石秀‘,‘female‘,18,‘20160513‘,‘打手‘,3000.29,402,2),
(‘李忠‘,‘female‘,28,‘20170127‘,‘打手‘,4000.33,402,2),

(‘吴用‘,‘male‘,28,‘20160311‘,‘文人‘,10000.13,403,3),
(‘萧让‘,‘male‘,18,‘19970312‘,‘文人‘,20000,403,3),
(‘安道全‘,‘female‘,18,‘20130311‘,‘文人‘,19000,403,3),
(‘公孙胜‘,‘male‘,18,‘20150411‘,‘文人‘,18000,403,3),
(‘朱贵‘,‘female‘,18,‘20140512‘,‘文人‘,17000,403,3)
]

for n,item in enumerate(l):
    d={
        "_id":n,
        ‘name‘:item[0],
        ‘sex‘:item[1],
        ‘age‘:item[2],
        ‘hire_date‘:datetime.datetime.strptime(item[3],‘%Y%m%d‘),
        ‘post‘:item[4],
        ‘salary‘:item[5]
    }
    table.save(d)
  • $match和?$group:相当于sql语句中的where和group by
{"$match":{"字段":"条件"}},可以使用任何常用查询操作符$gt,$lt,$in等

#例1、select * from db1.emp where post=‘公务员‘;
db.emp.aggregate({"$match":{"post":"公务员"}})

#例2、select * from db1.emp where id > 3 group by post;
db.emp.aggregate(
    {"$match":{"_id":{"$gt":3}}},
    {"$group":{"_id":"$post",‘avg_salary‘:{"$avg":"$salary"}}}
)

#例3、select * from db1.emp where id > 3 group by post having avg(salary) > 10000;
db.emp.aggregate(
    {"$match":{"_id":{"$gt":3}}},
    {"$group":{"_id":"$post",‘avg_salary‘:{"$avg":"$salary"}}},
    {"$match":{"avg_salary":{"$gt":10000}}}
)
{"$group":{"_id":分组字段,"新的字段名":聚合操作符}}

#1、将分组字段传给$group函数的_id字段即可
{"$group":{"_id":"$sex"}} #按照性别分组
{"$group":{"_id":"$post"}} #按照职位分组
{"$group":{"_id":{"state":"$state","city":"$city"}}} #按照多个字段分组,比如按照州市分组

#2、分组后聚合得结果,类似于sql中聚合函数的聚合操作符:$sum、$avg、$max、$min、$first、$last
#例1:select post,max(salary) from db1.emp group by post;
db.emp.aggregate({"$group":{"_id":"$post","max_salary":{"$max":"$salary"}}})

#例2:取每个部门最大薪资与最低薪资
db.emp.aggregate({"$group":{"_id":"$post","max_salary":{"$max":"$salary"},"min_salary":{"$min":"$salary"}}})

#例3:如果字段是排序后的,那么$first,$last会很有用,比用$max和$min效率高
db.emp.aggregate({"$group":{"_id":"$post","first_id":{"$first":"$_id"}}})

#例4:求每个部门的总工资
db.emp.aggregate({"$group":{"_id":"$post","count":{"$sum":"$salary"}}})

#例5:求每个部门的人数
db.emp.aggregate({"$group":{"_id":"$post","count":{"$sum":1}}})

#3、数组操作符
{"$addToSet":expr}#不重复
{"$push":expr}#重复

#例:查询岗位名以及各岗位内的员工姓名:select post,group_concat(name) from db1.emp group by post;
db.emp.aggregate({"$group":{"_id":"$post","names":{"$push":"$name"}}})
db.emp.aggregate({"$group":{"_id":"$post","names":{"$addToSet":"$name"}}})
  • $project:用于投射,即设定该键值对是否保留。1为保留,0为不保留,可对原有键值对做操作后增加自定义表达式
{"$project":{"要保留的字段名":1,"要去掉的字段名":0,"新增的字段名":"表达式"}}

#select name,post,(age+1) as new_age from db1.emp;
db.emp.aggregate(
    {"$project":{
        "name":1,
        "post":1,
        "new_age":{"$add":["$age",1]}
        }
})
#1、表达式之数学表达式
{"$add":[expr1,expr2,...,exprN]} #相加
{"$subtract":[expr1,expr2]} #第一个减第二个
{"$multiply":[expr1,expr2,...,exprN]} #相乘
{"$divide":[expr1,expr2]} #第一个表达式除以第二个表达式的商作为结果
{"$mod":[expr1,expr2]} #第一个表达式除以第二个表达式得到的余数作为结果

#2、表达式之日期表达式:$year,$month,$week,$dayOfMonth,$dayOfWeek,$dayOfYear,$hour,$minute,$second
#例如:select name,date_format("%Y") as hire_year from db1.emp
db.emp.aggregate(
    {"$project":{"name":1,"hire_year":{"$year":"$hire_date"}}}
)

#例如查看每个员工的工作多长时间
db.emp.aggregate(
    {"$project":{"name":1,"hire_period":{
        "$subtract":[
            {"$year":new Date()},
            {"$year":"$hire_date"}
        ]
    }}}
)

#3、字符串表达式
{"$substr":[字符串/$值为字符串的字段名,起始位置,截取几个字节]}
{"$concat":[expr1,expr2,...,exprN]} #指定的表达式或字符串连接在一起返回,只支持字符串拼接
{"$toLower":expr}
{"$toUpper":expr}

db.emp.aggregate( {"$project":{"NAME":{"$toUpper":"$name"}}})

#4、逻辑表达式
$and
$or
$not
  • 排序:$sort、限制:$limit、跳过:$skip
{"$sort":{"字段名":1,"字段名":-1}} #1升序,-1降序
{"$limit":n}
{"$skip":n} #跳过多少个文档

#例1、取平均工资最高的前两个部门
db.emp.aggregate(
{
    "$group":{"_id":"$post","平均工资":{"$avg":"$salary"}}
},
{
    "$sort":{"平均工资":-1}
},
{
    "$limit":2
}
)
#例2、
db.emp.aggregate(
{
    "$group":{"_id":"$post","平均工资":{"$avg":"$salary"}}
},
{
    "$sort":{"平均工资":-1}
},
{
    "$limit":2
},
{
    "$skip":1
}
)
  • 随机选取n个:$sample
#集合users包含的文档如下
{ "_id" : 1, "name" : "dave123", "q1" : true, "q2" : true }
{ "_id" : 2, "name" : "dave2", "q1" : false, "q2" : false  }
{ "_id" : 3, "name" : "ahn", "q1" : true, "q2" : true  }
{ "_id" : 4, "name" : "li", "q1" : true, "q2" : false  }
{ "_id" : 5, "name" : "annT", "q1" : false, "q2" : true  }
{ "_id" : 6, "name" : "li", "q1" : true, "q2" : true  }
{ "_id" : 7, "name" : "ty", "q1" : false, "q2" : true  }

#下述操作时从users集合中随机选取3个文档
db.users.aggregate(
   [ { $sample: { size: 3 } } ]
)

更局部的某个数组里的某个字典的数据

数据格式如下

user_algorithms = {
    ‘user_id‘: ‘01user‘,
    ‘algorithms‘: [{‘name‘: ‘qqqqq‘, ‘remark‘: ‘‘, ‘create_time‘: ‘2019-1-11‘, ‘category‘: ‘code1‘},
    {‘name‘: ‘xxxxx‘, ‘remark‘: ‘2B‘, ‘create_time‘: ‘2222-22-22‘, ‘category‘: ‘code2‘}],
    ‘is_local‘: True
}
from pymongo import MongoClient
client = MongoClient(‘127.0.0.1‘, 27017)
db = client.god.algorithms

def now_data_time():
    """
    获取当前时间
    :return:
    """
    import time
    import datetime
    t = time.time()
    now_time = datetime.datetime.fromtimestamp(t).strftime(‘%Y/%m/%d %H:%M:%S‘)
    return now_time

user_algorithms = db.find({‘user_id‘: user_id})
if user_algorithms.count() == 0:
    print(‘没有数据‘)
for i in user_algorithms:
    print(i)

    for algorithms in i[‘algorithms‘]:
        # print(algorithms)
        if algorithms[‘create_time‘] == create_time:
            algorithms[‘name‘] = ‘wwwww‘
            algorithms[‘category‘] = "code"
            algorithms[‘remark‘] = ‘你‘
            algorithms[‘create_time‘] = now_data_time()
            db.update({‘_id‘: i[‘_id‘]}, i)   # 更新数据
        else:
            print(‘没匹配上‘)

结果如下

{ "_id" : ObjectId("5cb85df65cc2c843123123ae"), "user_id" : "01user", "algorithms" : [ { "name" : "wwwww", "remark" : " 你", "create_time" : "2019/04/18 20:04:34", "category" : "code" }, { "name" : "xxxxx", "remark" : "2B", "create_time" : "2222-22-22", "category" : "code2" } ], "is_local" : true }

将_id字段的object转换成str,str转换成object

from bson.objectid import ObjectId
user_id = db.user.find({"mobile": "18312323542"})
# print(user_id)
for user in user_id:
    user[‘_id‘] = str(user[‘_id‘])  # 转成字符串
user_id = db.user.find({"_id": ObjectId("5cb0732a5cc2c80e484e1cf5")})  # 转成对象ObjectId

原文地址:https://blog.51cto.com/13764714/2383074

时间: 2024-11-09 01:44:37

mongodb 增删查改的相关文章

MongoDB增删查改

MongoDB自带了一个JavaScript Shell,所以在其中使用js语法是可以的. Insert操作: 单条插入 var single={"name":"mei","age":22} db.user.insert(single); 循环插入 var single={"name":"tinyphp","num":28,} for(var i=0;i<5;i++){single

MongoDB入门学习(三):MongoDB的增删查改

对于我们这种菜鸟来说,最重要的不是数据库的管理,也不是数据库的性能,更不是数据库的扩展,而是怎么用好这款数据库,也就是一个数据库提供的最核心的功能,增删查改. 因为MongoDB存储数据都是以文档的模式,所以在操作它的数据时,也是以文档为单位的.那么我们实现增删查改也是以文档为基础,不知道文档是什么的同学可以看看上篇介绍的基本概念. 1.插入文档 向MongoDB集合中插入文档的基本方法是insert: 单个插入 > document = {key : value} > db.collecti

少量代码带你熟悉MongoDB在Java下的增删查改

我们总不能一直使用cmd对数据库操作,数据库总是要在程序中使用的.今天来说一下怎么通过Java调用MongoDB. 学习一下最基本也是最常用的增删查改语句,这是使用数据库的基础. 注意事项: 1.要打开mongod.exe,程序运行期间要一直开着. 2.Java项目里面要导入mongo的jar包,mongo-版本号-jar. 以下为代码: public class MongoTest { public static void main(String args[]) throws UnknownH

MongoDB数据库进阶 --- 增删查改...

在之前的文章中,我已经介绍了什么事MongoDB以及怎么在windows下安装MongoDB等等基本知识. 所以这篇进阶的博客就主要介绍以下如何进行数据库的基本操作 --- 增删查改. 数据库相关 显示所有数据库: show dbs 其中admin和local都是默认存在的数据库. 查看当前数据库: db 即当前默认就是test数据库,但是为什么在 show dbs 的时候没有呢?  这是因为test数据库中没有任何数据,所以不会显示,后面会介绍插入数据,插入数据后就会显示了. 创建数据库: u

8天学通MongoDB——第二天 细说增删查改

看过上一篇,相信大家都会知道如何开启mongodb了,这篇就细说下其中的增删查改,首先当我们用上一篇同样的方式打开mongodb,突然 傻眼了,擦,竟然开启不了,仔细观察“划线区域“的信息,发现db文件夹下有一个类似的”lock file”阻止了mongodb的开启,接下来我们要做的就 是干掉它,之后,开启成功,关于mongodb的管理方式将在后续文章分享. 一: Insert操作 上一篇也说过,文档是采用“K-V”格式存储的,如果大家对JSON比较熟悉的话,我相信学mongodb是手到擒来,我

Asp.Net Mvc+MongoDB简单增删查改

                                   Asp.Net Mvc+MongoDB简单增删查改 概要:现在很多企业都在使用非关系型的NoSql数据库,其中MongoDB是相当热门的,最近有空就研究了一下,本文写了一套基于Asp.Net Mvc和MongoDB的简单增删查改,本文部分内容是借用其他博文,最后我会贴出出处. 正文: 在控制器的Models中新建一个UserModel模型(其中相当于另开一个类库,类似Dal层) using System; using Syst

Mongodb学习总结-2(细说增删查改)

看过上一篇,相信大家都会知道如何开启mongodb了,这篇就细说下其中的增删查改,首先当我们用上一篇同样的方式打开mongodb,突然 傻眼了,擦,竟然开启不了,仔细观察“划线区域“的信息,发现db文件夹下有一个类似的”lock file”阻止了mongodb的开启,接下来我们要做的就 是干掉它,之后,开启成功,关于mongodb的管理方式将在后续文章分享. 一: Insert操作 上一篇也说过,文档是采用“K-V”格式存储的,如果大家对JSON比较熟悉的话,我相信学mongodb是手到擒来,我

node.js+express+mongoose实现用户增删查改案例

node.js+express+mongodb对用户进行增删查改 一.用到的相关技术 使用 Node.js 的 express 框架搭建web服务 使用 express 中间件 body-parse 解析表单 post 请求体 使用 art-template 模板引擎渲染页面 使用第三方包 mongoose 来操作 MongoDB 数据库 二.在命令行用 npm 执行相关的命令 初始化项目,在命令行执行 npm init 然后一路回车就行了(或者直接 npm init -y)生成 package

php mysql增删查改

php mysql增删查改代码段 $conn=mysql_connect('localhost','root','root');  //连接数据库代码 mysql_query("set names utf8");  //传输编码 mysql_query('sql'$conn); //查找名为sql的数据库 admin为表名: 查找数据代码段: $sql="select * from admin ";  //查询表: $sql="select  * from