一个形式较精细的Strling公式的证明

近日整理书稿,在整理至Strling公式处时,发现当时数学老师所讲的是形式比较精细的一种:

Strling公式:\(n!=\sqrt{2\pi n}\left(\dfrac{n}{\mathrm{e}}\right)^n\mathrm{e}^{\frac{\theta_n}{12n}},\)其中\(\theta_n\in\left(\dfrac{n}{n+1},1\right)\)是一个与\(n\)有关的变量。

这相当于是利用Euler-Maclaurin求和公式所能得到的最精确形式的Strling公式之第一项。此处将这一种形式的Strling公式证明简要叙述一下,下面所用的证明方法是常见的一种证明模式。

引理1:\(\dfrac{1}{3}t^2<\dfrac{1}{2t}\ln\dfrac{1+t}{1-t}-1<\dfrac{1}{3}\cdot\dfrac{t^2}{1-t^2}.\quad(0<|t|<1)\)

证明:令\(f(t)=\ln\dfrac{1+t}{1-t}-2t-\dfrac23t^3\),则由

\[f‘(t)=\dfrac1{1+t}-\dfrac1{1-t}-2-2t^3=\dfrac{2t^4}{1-t^2}>0\quad(0<|t|<1)\]

知\(f(t)\)单增,而又有\(f(t)=0\),故可见\(f(t)>0\)在\(0<|t|<1\)时恒成立,而这正是要证的不等式的左半部分。同样的道理,设\(g(t)=\ln\dfrac{1+t}{1-t}-2t-\dfrac23\cdot\dfrac{t^3}{1-t^2}\),可验证得到

\[g‘(t)=\dfrac1{1+t}-\dfrac1{1-t}-2-\dfrac23\cdot\dfrac{3t^2(1-t^2)-t^3\cdot(-2t)}{(1-t^2)^2}=-\dfrac43\dfrac{t^4}{(1-t^2)^2}<0\quad(0<|t|<1)\]

从而\(g(t)\)单减,再由\(g(0)=0\)得到\(g(t)<0\)在\(0<|t|<1\)时恒成立,而这正是不等式的右半部分。综上就证明了题目所给不等式的正确性。

引理2:令\(\alpha_n=\ln(n!)+n-\left(n+\dfrac12\right)\ln n\ (n\geq1)\),证明

\[\dfrac1{12}\left(\dfrac1{n+1}-\dfrac1{n+2}\right)<\alpha_n-\alpha_{n+1}<\dfrac1{12}\left(\dfrac1n-\dfrac1{n+1}\right).\]

证明:可以算出

\[\alpha_n-\alpha_{n+1}=\left(n+\dfrac12\right)\ln\dfrac{n+1}n-1=\left.\left(\dfrac1{2x}\ln\dfrac{1+x}{1-x}-1\right)\right|_{x=\frac1{2n+1}}\]

这时应用引理1中的结果就有

\[\alpha_n-\alpha_{n+1}>\left.{\dfrac{x^2}3}\right|_{x=\frac1{2n+1}}=\dfrac12\left(\dfrac1{2n+1}\right)^2=\dfrac13\dfrac1{4n^2+4n+1}>\dfrac13\dfrac1{4(n^2+3n+2)}=\dfrac1{12}\left(\dfrac1{n+1}-\dfrac1{n+2}\right).\]

\[\alpha_n-\alpha_{n+1}<\left.{\dfrac13\dfrac{x^2}{1-x^2}}\right|_{x=\frac1{2n+1}}=\dfrac13\dfrac1{(2n+1)^2-1}=\dfrac1{12}\left(\dfrac1n-\dfrac1{n+1}\right)\]

由此就证明了题目所给的不等式。

引理3:设\(a_n=\alpha_n-\dfrac1{12n}\),\(b_n=\alpha_n-\dfrac1{12(n+1)}\),证明数列\(\{a_n\},\{b_n\}\)收敛且极限值相等。

证明:利用引理2的结果就有

\[\begin{cases}
a_n-a_{n+1}=(\alpha_n-\alpha_{n+1})-\dfrac1{12}\left(\dfrac1n-\dfrac1{n+1}\right)<0\b_n-b_{n+1}=(\alpha_n-\alpha_{n+1})-\dfrac1{12}\left(\dfrac1{n+1}-\dfrac1{n+2}\right)>0
\end{cases}\]

由此可见\(\{a_n\}\)是严格单增数列而\(\{b_n\}\)是严格单减数列,并且总是有\(a_n<b_n\),从而它们都有界。故由单调有界定理,它们都是收敛数列。此外,还容易验证\(\lim\limits_{n\to\infty}(b_n-a_n)=0\),因此它们的极限都相等。

最后,来证明文首所给的Strling公式。

Strling公式:\(n!=\sqrt{2\pi n}\left(\dfrac{n}{\mathrm{e}}\right)^n\mathrm{e}^{\frac{\theta_n}{12n}},\)其中\(\theta_n\in\left(\dfrac{n}{n+1},1\right)\)是一个与\(n\)有关的变量。

证明:设引理3中的两数列\(\{a_n\},\{b_n\}\)之极限值为\(\alpha\),并令

\[\begin{cases}
A_n=\mathrm{e}^{a_n}=\dfrac{n!}{\sqrt n}\left(\dfrac{\mathrm{e}}n\right)^n\mathrm{e}^{-\frac1{12n}}\B_n=\mathrm{e}^{b_n}=\dfrac{n!}{\sqrt n}\left(\dfrac{\mathrm{e}}n\right)^n\mathrm{e}^{-\frac1{12(n+1)}}
\end{cases}\]

那么就有\(A_n<\mathrm{e}^\alpha<B_n\)成立。记\(A=\mathrm{e}^\alpha\),那么就有\(A_n<A<B_n\),为此应该存在一个与\(n\)相关的\(\theta_n\in\left(\dfrac{n}{n+1},1\right)\)使得

\[n!=A\sqrt{n!}\left(\dfrac{n}{\mathrm{e}}\right)^n\mathrm{e}^{\frac{\theta_n}{12n}}.\]

到这里为止,我们只要将常数\(A\)确定下来就够了。为此,考虑将Wallis公式变形一下:

\[\dfrac\pi2=\lim\limits_{n\to\infty}\left(\dfrac{(2n)!!}{(2n-1)!!}\right)^2\dfrac1{2n+1}=\lim\limits_{n\to\infty}\left(\dfrac{2^{2n}(n!)^2}{(2n)!}\right)^2\dfrac1{2n+1}\]

然后代入\(n!=A\sqrt{n}\left(\dfrac{n}{\mathrm{e}}\right)^n\mathrm{e}^{\frac{\theta_n}{12n}}\)就有:

\[\lim\limits_{n\to\infty}\left[\dfrac{\left(2^{2n}\cdot A\sqrt n\left(\dfrac{n}{\mathrm{e}}\right)^n\mathrm{e}^{\frac{\theta_n}{12n}}\right)^2}{A\sqrt{2n}\left(\dfrac{2n}{\mathrm{e}}\right)^2n\cdot\mathrm{e}^{\frac{\theta_{2n}}{24n}}}\right]^2\dfrac1{2n+1}=\dfrac\pi2.\]

也即\(\lim\limits_{n\to\infty}\left(\sqrt{\dfrac n2}A\mathrm{e}^{\frac{\theta_n}{12n}}/\mathrm{e}^{\frac{\theta_{2n}}{24n}}\right)^{2n}\cdot\dfrac1{2n+1}=\dfrac\pi2.\)展开平方,我们得到

\[\lim\limits_{n\to\infty}\dfrac{nA^2}{2}\dfrac{\mathrm{e}^{\frac{\theta_n}{6n}}}{\mathrm{e}^{\frac{\theta_{2n}}{12n}}}\cdot\dfrac1{2n+1}=\dfrac{A^2}4=\dfrac\pi2\]

故解出常数\(A=\sqrt{2\pi}\)。将其带回之前的估计式中,我们就最终得到了

\[n!=\sqrt{2\pi n}\left(\dfrac{n}{\mathrm{e}}\right)^n\mathrm{e}^{\frac{\theta_n}{12n}}\]

其中\(\theta_n\in(\dfrac n{n+1},1)\)与\(n\)有关。

原文地址:https://www.cnblogs.com/xjtu-blacksmith/p/9390786.html

时间: 2024-10-10 08:47:35

一个形式较精细的Strling公式的证明的相关文章

罗德里格斯公式的证明

https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula#Statement 罗德里格斯的旋转公式 这篇文章是关于罗德里格斯的旋转公式,它与相关的欧拉罗德里格斯参数和欧拉罗德里格斯公式的3D旋转不同. 在三维旋转理论中,对于给定旋转轴和旋转角度,以Olinde Rodrigues命名的罗德里格斯公式是用于在空间旋转向量的高效算法.通过扩展,它可以用于把所有轴角表达的三维向量转化为SO(3)中的旋转矩阵,S0(3)是包含所有旋转矩阵的群

关于高斯-博内公式的一个简单的内蕴证明

关于高斯-博内-陈 平面上任一三角形的三内角之和恒等于π,对于一般曲面上由三条测地线构成的三角形,其内角和等于π加上高斯曲率K在此三角形所围曲面上的积分. 1827年,高斯证明了这一定理.1944年,博内将这一定理推广到一般曲面上,由任一闭曲线C围成的单连通区域,形成了著名的高斯-博内公式.1944年,陈省身给出了高斯-博内公式的内藴证明. 欧拉数虽然神秘有趣,可还是引不起数学家们的强烈兴趣,原因是它太简单了,小学生都可以很快弄懂这些数的来源,那个时代的数学家们总是希望有个积分,微分什么的,以显

凯利公式的模拟验证

凯利公式的模拟验证 场景:一个赌局,你跟庄家.你出 1 元,庄家出 0.96元.赌金数目可随之翻倍.    根据每次抛色子的结果的单双决定胜负.    胜者得到双方所下的赌金,计 1.96 元. 问题:如何下注才能做到,风险最小,盈利最大呢? 答案:凯利公式. 凯利公式的作用: 根据赔率与胜率,得出你每次的资金下注比例 公式的两种形式: 公式:(期望报酬率)/(赔率) 公式:(盈利概率×盈利金额-亏损概率×亏损额)/(盈利额 / 亏损额) 凯利公式最初为 AT&T 贝尔实验室物理学家约翰·拉里·

五猴分桃通解公式-敬献给诺贝尔奖获得者李政道博士

摘要:"五猴分桃问题"是一个中.外非常有名的趣味数学难题.研究这种类型题的简易计算方法曾困扰住了一些大物理学家和数学家.李政道博士在中国科技大学讲学时也特意提到此题, 本文通过对该问题的分析,推导出了能求解所有这种类型题的最简易通解公式 y=a(a/m)n-1-db/c,以及它的姊妹公式: y=[ka(a/m)n-1-db]/c,以及这两个公式有解和无解的条件,使这个问题得到了较园满的解决. Summary: "Five monkey peach assignment pro

组合数学漫游奇境记:Schur 多项式,Hook 长度公式,Macmahon 平面分拆公式

Young 表上的组合学是代数组合学中最奇妙的部分,与表示论,统计力学,概率论有着丰富而深刻的联系.这篇文章将从几个有趣的问题开始,带领大家走进这个美丽的领域.所需要的预备知识很少,学过线性代数即可,但是要真正领略其中风光,数学上的成熟是必不可少的. 需要事先剧透的是,本文要证明的几个定理绝非泛泛,它们都是代数组合学中的著名结论. 先来看几个问题: 有 $m$ 位总统候选人参加大选,他们每个人分别有 $\lambda_1,\ldots,\lambda_m$ 位支持者(假定选民只投票给他支持的候选

通达信财务函数与股票公式进阶篇[转]

http://blog.sina.com.cn/s/blog_676348b301018f6v.html 通达信财务函数与股票公式进阶篇[转] (2012-12-09 17:38:13) 转载▼ 标签: 杂谈   FINANCE(1) 总股本(万股)FINANCE(2) 国家股(万股)FINANCE(3) 发起人法人股(万股)FINANCE(4) 法人股(万股)FINANCE(5) B股(万股)FINANCE(6) H股(万股)FINANCE(7) 流通股本(万股)CAPITAL 流通股本(手)

梯度下降法的三种形式BGD、SGD以及MBGD

阅读目录 1. 批量梯度下降法BGD 2. 随机梯度下降法SGD 3. 小批量梯度下降法MBGD 4. 总结 在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练.其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点. 下面我们以线性回归算法来对三种梯度下降法进行比较. 一般线性回归函数的假设函数为: 对应的能量函数(损失函数)形式为: 下图为一个二维参数(θ0和θ1)组对应能量函数的可视化图: 1 批量梯度下降法BGD 批量梯度下降法(Batch Grad

一天一个Java基础——泛型

这学期的新课——设计模式,由我仰慕已久的老师传授,可惜思维过快,第一节就被老师挑中上去敲代码,自此在心里烙下了阴影,都是Java基础欠下的债 这学期的新课——算法设计与分析,虽老师不爱与同学互动式的讲课,但老师讲的挺好,不过由于数据结构欠缺课听的有点烧脑,都是数据结构欠下的债 这学期的新课——英语口语,虽外教老师风骚逗趣浪荡不羁爱自由,但我辈词汇量欠缺,表明淡定说yeah,但心中一万匹草泥马策马奔腾,都是英语欠下的债 1.泛型类 实体类(容器类),经常重用的类,下面是一个没有用泛型的实体类: 1

基于Extjs的web表单设计器 第七节——取数公式设计之取数公式的使用

基于Extjs的web表单设计器 基于Extjs的web表单设计器 第一节 基于Extjs的web表单设计器 第二节——表单控件设计 基于Extjs的web表单设计器 第三节——控件拖放 基于Extjs的web表单设计器 第四节——控件拖放 基于Extjs的web表单设计器 第五节——数据库设计 基于Extjs的web表单设计器 第六节——界面框架设计 基于Extjs的web表单设计器 第七节——取数公式设计之取数公式定义 基于Extjs的web表单设计器 第七节——取数公式设计之取数公式的使用