c++动态规划dp算法题

问题1:找硬币,换钱的方法

输入:

  • penny数组代表所有货币的面值,正数不重复
  • aim小于等于1000,代表要找的钱

输出:
换钱的方法总数

解法1:经典dp,空间复杂度O(n*aim)

class Exchange {
public:
    int countWays(vector<int> penny, int n, int aim) {
        if (penny.empty()||n == 0)
            return 0;
        vector<vector<int> > dp(n,vector<int>(aim+1)); //二维数组dp
        for (int i = 0;i < n;i++) {
            dp[i][0] = 1;
        }
        for (int j = 1;j < aim+1;j++) {
            dp[0][j] = j%penny[0] == 0?1:0;  //只需要算dp[0][j]
        }   

        for (int i = 1;i < n;i++) {
            for (int j = 1;j < aim+1;j++) {
                dp[i][j] = (j-penny[i]) >= 0?(dp[i-1][j] + dp[i][j-penny[i]]):dp[i-1][j];   //这是关键,不用管penny【i】到底使用了几次,直接减去1次使用就好
            }
        }
        return dp[n-1][aim];
    }
};

  解法2:与上面的问题一样,只不过在求dp时只使用1维数组来做;使用迭代,时间复杂度一样:

class Exchange {
public:
    int countWays(vector<int> penny, int n, int aim) {
        vector<int> dp(aim + 1);
        for (int i = 0; i <= aim; i++)
            if (i % penny[0] == 0)
                dp[i] = 1;

        for (int i = 1; i < n; i++)
            for (int j = 1; j <= aim; j++)
                if ( j >= penny[i]) //条件,如果不满足就直接等于上轮的结果,不用做修改
                    dp[j] += dp[j - penny[i]];
        return dp[aim];
    }
};

问题2:跳台阶问题:

其实是斐波那契问题,f(n)=f(n-1)+f(n-2)

#include <iostream>
using namespace std;
int main(){
	int step;
	while(cin>>step){
		vector<int> dp(2,1); //初始化赋值
		dp[1]=2;
		int temp;
		for(int i=3;i<=step;i++){
			temp=dp[0];
            dp[0]=dp[1];
            dp[1]=dp[1]+temp;
		}
		if(step==1) dp[1]=1;;
		cout<<dp[1]<<endl;
	}
	return 0;
}

 问题3:走矩阵,求路劲最小和,或者是求整个路径

n×m的map,则 f(n,m)=min(f(n-1,m),f(n,m-1))+map[n][m];

由于这里和问题1类似,可以只用到一个一维数组求解;

class MinimumPath {
public:
    int getMin(vector<vector<int> > map, int n, int m) {
        vector<int> dp(m,0);
        dp[0] = map[0][0];
        for (int i = 1,j = 0;i < m;i++,j++) {
            dp[i] = map[0][i]+dp[j];
        }

        for (int i = 1;i < n;i++) {
            dp[0] += map[i][0];     //不能忘了dp[0]的更新
            for (int j = 1;j < m;j++) {
                dp[j] = min(dp[j],dp[j-1])+map[i][j]; //如果求路径,则在这里记录,需要额外存储空间
            }
        }
        return dp[m-1];
    }
};

  

原文地址:https://www.cnblogs.com/zhang-qc/p/9265218.html

时间: 2024-07-31 08:37:52

c++动态规划dp算法题的相关文章

动态规划——DP算法(Dynamic Programing)

一.斐波那契数列(递归VS动态规划) 1.斐波那契数列——递归实现(python语言)——自顶向下 递归调用是非常耗费内存的,程序虽然简洁可是算法复杂度为O(2^n),当n很大时,程序运行很慢,甚至内存爆满. 1 def fib(n): 2 #终止条件,也就是递归出口 3 if n == 0 or n == 1: 4 return 1 5 else: 6 #递归条件 7 return (fib(n-1) + fib(n - 2)) 2.斐波那契数列——动态规划实现(python语言)——自底向上

0-1背包的动态规划算法,部分背包的贪心算法和DP算法------算法导论

一.问题描述 0-1背包问题,部分背包问题.分别实现0-1背包的DP算法,部分背包的贪心算法和DP算法. 二.算法原理 (1)0-1背包的DP算法 0-1背包问题:有n件物品和一个容量为W的背包.第i件物品的重量是w[i],价值是v[i].求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大.其中每种物品只有一件,可以选择放或者不放. 最优子结构性质:对于0-1问题,考虑重量至多W的最值钱的一包东西.如果去掉其中一个物品j,余下的必是除j以外的n-1件物品中,可以带走的重量

DP算法学习

遇到好多问题都在说DPDPDP啊啊啊,好苦恼自己多看看.无非分三步一步一步熟悉就好啦! 原文:http://blog.sina.com.cn/s/blog_50eaa92f0100c8t7.html 动态规划算法的有效性依赖于待求解问题本身具有的两个重要性质:最优子结构性质和子问题重叠性质. 1.最优子结构性质.如果问题的最优解所包含的子问题的解也是最优的,我们就称该问题具有最优子结构性质(即满足最优化原理).最优子结构性质为动态规划算法解决问题提供了重要线索. 2.子问题重叠性质.子问题重叠性

最大子段和的DP算法设计及其效率测试

表情包形象取自番剧<猫咪日常> 那我也整一个 曾几何时,笔者是个对算法这个概念漠不关心的人,由衷地感觉它就是一种和奥数一样华而不实的存在,即便不使用任何算法的思想我一样能写出能跑的程序 直到一年前帮同学做了个手机游戏demo才发现了一个严峻的问题 为啥*一样的画面能跑出ppt的质感? 虽然发现当时的问题主要出现在使用了一个有bug的API,它导致了低性能的循环调用,但是从那时便开始就重新审视算法了,仅仅一个函数就能大幅地改变程序带给用户的体验这个观念根植心底 后来多多少少也学习了一些算法的知识

算法题之字符串匹配问题

我最近复习一道困难程度的算法题,发现了许多有趣之处.在借鉴了他人解法后,发现从最简单的情况反推到原题是一种解锁新进阶的感觉.从递归到动态规划,思维上一步一步递进,如同一部跌宕起伏的小说,记录下来和诸君共赏之. 题目如下: 给你一个字符串?s?和一个字符规律?p,请你来实现一个支持 '.'?和?'*'?的正则表达式匹配. '.' 匹配任意单个字符 '*' 匹配零个或多个前面的那一个元素 所谓匹配,是要涵盖?整个?字符串?s的,而不是部分字符串. 说明: s?可能为空,且只包含从?a-z?的小写字母

Leetcode动态规划【简单题】

目录 Leetcode动态规划[简单题] 53. 最大子序和 题目描述 思路分析 复杂度分析 70.爬楼梯 题目描述 思路分析 复杂度分析 121.买卖股票的最佳时机 题目描述 思路分析 复杂度分析 303.区域和检索-数组不可变 题目描述 思路分析 复杂度分析 Leetcode动态规划[简单题] 动态规划(Dynamic programming,简称DP),是一种把原问题分解为相对简单的子问题的方式求解复杂问题的方法.动态规划相较于递归,拥有更少的计算量. 53. 最大子序和 题目描述 给定一

青蛙的烦恼(dp好题)

有n片荷叶正好在一凸多边形顶点上 有一只小青蛙恰好站在1号荷叶的点 小青蛙可以从一片荷叶上跳到另外任意一片荷叶上 给出N个点的坐标N<800 求小青蛙想通过最短的路程遍历所有的荷叶一次且仅一次的最短路径. 这题如果没有凸多边形的性质,就是裸的TSP问题,数据范围没法做的很大,用dp做也最多做到n=20左右,即使用更高级的退火模拟算法也只能到40左右. 但是这题的点在凸多边形上,因此有下面的性质: 青蛙遍历的路径不会相交. 证明很简单,画个图,利用三角形两边之和大于第三边即可. 结论:青蛙在1号结

一天一道算法题--6.25--无定义

感谢微信平台---一天一道算法题--每天多一点进步---- 其实今天我接下去补上的几题都来自---待字闺中 所以我就原封不动的将它的题目与分析搬过来了 原题 给定一个数组,我们可以找到两个不相交的.并且是连续的子数组A和B,A中的数字和为sum(A), B中的元素和为sum(B).找到这样的A和B,满足sum(A) - sum(B)的绝对值是最大的. 例如:[2, -1 -2, 1, -4, 2, 8]划分为A=[-1, -2, 1, -4], B=[2, 8], 最大的值为16 分析 如果没有

快餐问题(dp好题)

Peter最近在R市开了一家快餐店,为了招揽顾客,该快餐店准备推出一种套餐,该套餐由A个 汉堡,B个薯条和C个饮料组成.价格便宜.为了提高产量,Peter从著名的麦当劳公司引进了N条 生产线.所有的生产线都可以生产汉堡,薯条和饮料,由于每条生产线每天所能提供的生产时间是有 限的.不同的,而汉堡,薯条和饮料的单位生产时间又不同.这使得Peter很为难,不知道如何安排 生产才能使一天中生产的套餐产量最大.请你编一程序,计算一天中套餐的最大生产量.为简单起见, 假设汉堡.薯条和饮料的日产量不超过100