0、机器学习算法分类

1、机器学习算法分类:

  • 监督学习
    监督学习的训练数据包含了类别信息,在监督学习中,典型的问题是分类(Classification)和回归(Regression),典型的算法有Logistics Regression 、BP神经网络算法和相性回归算法。
     监督学习流程:
  • 无监督学习 
    与监督学习不同的是,无监督学习(Unsupervised Learning)的训练数据中不包含任何类别信息。在无监督学习中,其典型的问题为聚类(Clustering)问题,代表的算法有K-Means算法、DBSCAN算法等。
    无监督流程:
  • 半监督学习
    半监督学习(Semi-Supervised Learning)的训练数据中有一部分数据包含类别信息,同时有一部分数据不包含类别信息,是监督学习与无监督学习的融合,在半监督学习中,其算法一般是在监督学习的算法上进行扩展,使之可以对未标注数据建模。
  • 增强学习  

原文地址:https://www.cnblogs.com/wanshuai/p/9086254.html

时间: 2024-10-05 04:45:15

0、机器学习算法分类的相关文章

机器学习算法分类及其评估指标

机器学习的入门,我们需要的一些基本概念: 机器学习的定义 M.Mitchell<机器学习>中的定义是: 对于某类任务T和性能度量P,如果一个计算机程序在T上以P衡量的性能随着经验E而自我完善,那么我们称这个计算机程序从经验E中学习. 算法分类 两张图片很好的总结了(机器学习)的算法分类: 评估指标 分类(Classification)算法指标: Accuracy准确率 Precision精确率 Recall召回率 F1 score 对于分类问题的结果可以用下表表示(说明:True或者False

机器学习算法分类

转自@王萌,有少许修改. 机器学习起源于人工智能,可以赋予计算机以传统编程所无法实现的能力,比如飞行器的自动驾驶.人脸识别.计算机视觉和数据挖掘等. 机器学习的算法很多.很多时候困惑人们的是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的.这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性. 学习方式 将算法按照学习方式分类可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果. 监督学习  在监督学习中,输入数据被称为"训

(1)机器学习算法——分类问题:感知机模型

感知机模型是一个二分类的线性分类模型.其输入为实例的特征峰向量.输出是实例的类别,取+1和-1两种值.感知机对应于输入空间中讲实例划分为正负两类的分离超平面,属于判别模型.其判别函数为: w是超平面的法向量,b是超平面的截距. 如图 其损失函数的选择是误分点到决策面的距离.因此决策面可以有多个.感知机模型是无法解决异或问题的. 原文地址:https://www.cnblogs.com/yuanfuqiang/p/9759538.html

建模分析之机器学习算法(附python&amp;R代码)

0序 随着移动互联和大数据的拓展越发觉得算法以及模型在设计和开发中的重要性.不管是现在接触比较多的安全产品还是大互联网公司经常提到的人工智能产品(甚至人类2045的的智能拐点时代).都基于算法及建模来处理.     常见的词汇:机器学习.数据建模.关联分析.算法优化等等,而这些种种又都是基于规律的深度开发(也难怪道德经的首篇就提出道可道非常道,名可名非常名的说法),不管是线性还是非线性,总之存在关联关系,而我们最好理解的就是线性关系,简单的用个函数就能解决.比如我们生活中应用的比较的归纳总结,其

Machine Learning:机器学习算法

原文链接:https://riboseyim.github.io/2018/02/10/Machine-Learning-Algorithms/ 摘要 机器学习算法分类:监督学习.半监督学习.无监督学习.强化学习 基本的机器学习算法:线性回归.支持向量机(SVM).最近邻居(KNN).逻辑回归.决策树.k平均.随机森林.朴素贝叶斯.降维.梯度增强 目录 监督学习(Supervised learning) 监督学习 原文地址:https://www.cnblogs.com/Antiver/p/99

机器学习算法Review之分类

机器学习有着丰富的理论,分为有监督学习和无监督学习,有监督学习包括分类和回归,无监督学习包括聚类等.各种机器学习算法的基本思想都不难理解(这里的基本思想我的理解是各个算法的模型建立),而难点在于对于模型的求解,这里边有着优美的理论还有一些技巧,如SVM,EM,CART,AdaBoost,RF等.这些算法都是一些专家学者历经数年乃至十数年的研究成果,要想将它们都研究透彻确实是一项大工程,多数算法深入下去都是一本书,因此这里旨在从理解及应用的角度对这些经典的机器学习算法进行review. 分类 1)

【机器学习算法-python实现】K-means无监督学习实现分类

1.背景 无监督学习的定义就不多说了,不懂得可以google.因为项目需要,需要进行无监督的分类学习. K-means里面的K指的是将数据分成的份数,基本上用的就是算距离的方法. 大致的思路就是给定一个矩阵,假设K的值是2,也就是分成两个部分,那么我们首先确定两个质心.一开始是找矩阵每一列的最大值max,最小值min,算出range=max-min,然后设质心就是min+range*random.之后在逐渐递归跟进,其实要想明白还是要跟一遍代码,自己每一步都输出一下看看跟自己想象的是否一样. (

机器学习算法原理解析——分类

1. KNN分类算法原理及应用 1.1 KNN概述 K最近邻(k-Nearest Neighbor,KNN)分类算法是最简单的机器学习算法. KNN算法的指导思想是“近朱者赤,近墨者黑”,由你的邻居来推断你的类型. 本质上,KNN算法就是用距离来衡量样本之间的相似度. 1.2 算法图示 从训练集中找到和新数据最接近的k条记录,然后根据多数类来决定新数据类别 算法涉及3个主要因素 1) 训练数据集 2) 距离或相似度的计算衡量 3) k的大小 算法描述 1) 已知两类“先验”数据,分别是蓝方块和红

转:机器学习算法原理解析 - 分类

转:http://www.cnblogs.com/swordfall/p/9517988.html 常见分类模型与算法 距离判别法,即最近邻算法KNN: 贝叶斯分类器: 线性判别法,即逻辑回归算法: 决策树: 支持向量机: 神经网络: 1. KNN分类算法原理及应用 1.1 KNN概述 K最近邻(k-Nearest Neighbor,KNN)分类算法是最简单的机器学习算法. KNN算法的指导思想是"近朱者赤,近墨者黑",由你的邻居来推断你的类型. 本质上,KNN算法就是用距离来衡量样本