Python 多线程 和 多进程的CPU使用情况进行对比

# 多进程

这是没跑多进程之前的使用情况

跑了2个多进程之后:

使用率 65%,

跑了4个多进程后:

CPU使用率:100%

--------------------------------------------------分割线------------------------------------------------------------

多线程:

开启了4个线程,但使用率始终是百分之20多,因为在Python里,永远只有一个线程在工作

-------------------------------------------------分割线---------------------------------------------------------------

java多线程:

java开启两个线程死循环的使用率:52.3%

java开启4个线程死循环的使用率:99%

------------------------------------------------------------分割线---------------------------------------------------

看到这里,你好像发现了什么!!

1、由以上图可见,Python的线程是多么的鸡肋。

2、当然,也知道,线程是可以并行的(4个线程分配到其他物理核心,在CPU的眼里,只有线程),线程是可能(可以)被分配到不同的CPU核心去执行的。

3、另外,CPU有一个策略,有的CPU虽然核心多,但不一定所有核心都在同时工作,因为要考虑到节能、发热等,它会选择性的关掉一些核心

4、python 能通过 多进程 + 主线程 的 方式实现并行

目前CPU的主流结构:

  N核N*2线程:例如 双核四线程,它是伪四核,不是真正意义上的四核,将每个物理核心模拟成4个逻辑核心

    就好比如:有两条各宽4米的马路(双核),被用横线规划成了8条1米的马路,那么它可以同时跑8辆宽度1米的小车,但是宽4米的车还是只能跑2辆

  N核N 线程: 例如 四核四线程

    就好比如: 有四条各宽4米的马路,能跑16辆1米的小车,也能跑4辆4宽米的车。这就是为什么同代i3 比 i5 便宜的原因,在小数据量的并行时,

          双核四线程是起作用的,但是大的数据量并行时,就比不上真四核了

原文地址:https://www.cnblogs.com/jbzd/p/9279856.html

时间: 2024-10-07 11:29:19

Python 多线程 和 多进程的CPU使用情况进行对比的相关文章

在python中单线程,多线程,多进程对CPU的利用率实测以及GIL原理分析

首先关于在python中单线程,多线程,多进程对cpu的利用率实测如下: 单线程,多线程,多进程测试代码使用死循环. 1)单线程: 2)多线程: 3)多进程: 查看cpu使用效率: 开始观察分别执行时候cpu的使用效率: 1)单线程执行的时候: 2)多线程执行的时候: 3)多进程执行的时候: 总结: 1)单进程单线程时,对于双核CPU的利用率只能利用一个核,没有充分利用两个核. 2)单进程多线程时,对于双核CPU的来说,虽然两个核都用到的,不过很明显没有充分利用两个核,这里要说一个GIL(全局解

Python多线程和多进程谁更快?

python多进程和多线程谁更快 python3.6 threading和multiprocessing 四核+三星250G-850-SSD 自从用多进程和多线程进行编程,一致没搞懂到底谁更快.网上很多都说python多进程更快,因为GIL(全局解释器锁).但是我在写代码的时候,测试时间却是多线程更快,所以这到底是怎么回事?最近再做分词工作,原来的代码速度太慢,想提速,所以来探求一下有效方法(文末有代码和效果图) 这里先来一张程序的结果图,说明线程和进程谁更快 一些定义 并行是指两个或者多个事件

基于Windows平台的Python多线程及多进程学习小结

python多线程及多进程对于不同平台有不同的工具(platform-specific tools),如os.fork仅在Unix上可用,而windows不可用,该文仅针对windows平台可用的工具进行总结. 1.多线程 单线程中,如果某一任务(代码块)是long-time running的,则必须等待该任务(代码块)结束,才可以对下一个任务进行操作,为解决long-time 任务的block问题,可将创建多个线程,间隔选择多线程进行操作.python 中多线程常用的库为_thread,thr

python多线程、多进程以及GIL

多线程 使用threading模块创建线程 传入一个函数 这种方式是最基本的,即调用threading中的Thread类的构造函数,然后指定参数target=func,再使用返回的Thread的实例调用start()方法,即开始运行该线程,该线程将执行函数func,当然,如果func需要参数,可以在Thread的构造函数中传入参数args=(-).示例代码如下 import threading #用于线程执行的函数 def counter(n): cnt = 0; for i in xrange

python多线程、多进程、协程的使用

本文主要介绍多线程.多进程.协程的最常见使用,每个的详细说明与介绍有时间会在以后的随笔中体现. 一.多线程 1.python通过两个标准库thread和threading提供对线程的支持.thread提供了低级别的.原始的线程以及一个简单的锁.threading通过对thread模块进行二次封装,提供了更方便的API来操作线程.接下来只介绍threading的常见用法. 2.使用 import threading import time def Traversal_5(interval): fo

python 多线程、多进程

一.首先说下多线程.多进程用途及异同点,另外还涉及到队列的,memcache.redis的操作等: 1.在python中,如果一个程序是IO密集的操作,使用多线程:运算密集的操作使用多进程. 但是,其实在python中,只支持一个cpu的多线程,多个任务是切换执行的,并不能并行执行,所以有的时候,多线程并不比单线程要快,在我们的理解中,下意识的就会认为 多线程肯定比单线程要快,其实不然,多线程只会在有线程阻塞的情况下才会起到效果,下面我们来看一个实例: 1 import os,sys,json

python 多线程和多进程

多线程与多进程 知识预览 一 进程与线程的概念 二 threading模块 三 multiprocessing模块 四 协程 五 IO模型 回到顶部 一 进程与线程的概念 1.1 进程 考虑一个场景:浏览器,网易云音乐以及notepad++ 三个软件只能顺序执行是怎样一种场景呢?另外,假如有两个程序A和B,程序A在执行到一半的过程中,需要读取大量的数据输入(I/O操作),而此时CPU只能静静地等待任务A读取完数据才能继续执行,这样就白白浪费了CPU资源.你是不是已经想到在程序A读取数据的过程中,

Python多线程与多进程(一)

多线程 多线程是程序在同样的上下文中同时运行多条线程的能力.这些线程共享同一个进程的资源,可以在并发模式(单核处理器)或并行模式(多核处理器)下执行多个任务 多线程有以下几个优点: 持续响应:在单线程的程序中,执行一个长期运行的任务可能会导致程序的冻结.多线程可以把这个长期运行的任务放在一个线程中,在程序并发的运行任务时可以持续响应客户的需求 更快的执行速度:在多核处理器的操作系统上,多线程可以通过真正的并行提高程序的运行速度 较低的资源消耗:利用线程模式,程序可以利用一个进程内的资源响应多个请

搞定python多线程和多进程

1.1 线程 1.1.1 什么是线程 线程是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务.一个线程是一个execution context(执行上下文),即一个cpu执行时所需要的一串指令. 1.1.2 线程的工作方式 假设你正在读一本书,没有读完,你想休息一下,但是你想在回来时恢复到当时读的具体进度.有一个方法就是记下页数.行数与字数这三个数值,这些数值就是exe