分类问题中的过采样和欠采样

在分类问题中,有存在正反例数目差异较大的情况,这种情况叫做类别不平衡。

针对这种问题,解决方式主要有3种:假设正例数量大,反例数目极小。

1、减少正例的数量,使得数据平衡,再进一步分类,这种情况属于“欠采样”

2、增加反例的数目平衡数据,再分类,这种称为“过采样”;

3、阈值移动:直接使用原始数据进行分类,但在用训练好的分类器进行预测时,将下式加入到决策过程中,以调整正反例的平衡性。

原文地址:https://www.cnblogs.com/luban/p/9414468.html

时间: 2024-10-31 15:28:18

分类问题中的过采样和欠采样的相关文章

分类问题中的数据不平衡问题

http://blog.csdn.net/heyongluoyao8/article/details/49408131 http://blog.csdn.net/lxg0807/article/details/71440477 ??在很多机器学习任务中,训练集中可能会存在某个或某些类别下的样本数远大于另一些类别下的样本数目.即类别不平衡,为了使得学习达到更好的效果,因此需要解决该类别不平衡问题. Jason Brownlee的回答: 原文标题:8 Tactics to Combat Imbala

机器学习算法中的过拟合与欠拟合

在机器学习表现不佳的原因要么是过度拟合或欠拟合数据. 机器学习中的逼近目标函数过程 监督式机器学习通常理解为逼近一个目标函数(f)(f),此函数映射输入变量(X)到输出变量(Y). Y=f(X)Y=f(X) 这种特性描述可以用于定义分类和预测问题和机器学习算法的领域. 从训练数据中学习目标函数的过程中,我们必须考虑的问题是模型在预测新数据时的泛化性能.泛化好坏是很重要的,因为我们收集到的数据只是样本,其带有噪音并且是不完全的. 机器学习中的泛化 在In机器学习中,我们描述从训练数据学习目标函数的

读论文《BP改进算法在哮喘症状-证型分类预测中的应用》

总结: 一.研究内容 本文研究了CAL-BP(基于隐层的竞争学习与学习率的自适应的改进BP算法)在症状证型分类预测中的应用. 二.算法思想 1.隐层计算完各节点的误差后,对有最大误差的节点的权值进行正常修正,  而对其它单元的权值都向相反方向修正,用 δ表示隐层节点的权值修正量, 则修正量的调整公式具体为 2.每次算法迭代完以后,计算误差函数的值并与前一次的值进行比较,如果误差函数的值增大,     则代表过调了学习率,应在下一次迭代时以一定比率下调学习率 ],若误差函数的i+1值减小,    

Discuz! X3.2 在帖子标题显示分类信息中的某个字段内容的实现方法

1. 设计好一组分类信息: 2. 在列表页模板中填写帖子的标题格式,例如: [{producer_value}][{artist_value}]{subject}[{size_value}{size_unit}] 3. 修改template\default\forum\forumdisplay_list.htm文件,将173行起的一组 if 语句替换成: <!--{if !$thread[sortid]}--> <a href="forum.php?mod=viewthread

分类问题中的“维数灾难”

在看机器学习的论文时,经常会看到有作者提到“curse of dimensionality”,中文译为“维数灾难”,这到底是一个什么样的“灾难”?本文将通过一个例子来介绍这令人讨厌的“curse of dimensionality”以及它在分类问题中的重要性. 假设现在有一组照片,每一张照片里有一只猫或者一条狗.我们希望设计一个分类器可以自动地将照片中的动物辨别开来.为了实现这个目标,首先需要考虑如何将照片中的动物的特征用数字的形式表达出来.猫与狗的最大区别是什么?有人可能首先想到猫与狗的颜色不

MCMC(三)MCMC采样和M-H采样

MCMC(一)蒙特卡罗方法 MCMC(二)马尔科夫链 MCMC(三)MCMC采样和M-H采样 MCMC(四)Gibbs采样(待填坑) 在MCMC(二)马尔科夫链中我们讲到给定一个概率平稳分布$\pi$, 很难直接找到对应的马尔科夫链状态转移矩阵$P$.而只要解决这个问题,我们就可以找到一种通用的概率分布采样方法,进而用于蒙特卡罗模拟.本篇我们就讨论解决这个问题的办法:MCMC采样和它的易用版M-H采样. 1. 马尔科夫链的细致平稳条件 在解决从平稳分布$\pi$, 找到对应的马尔科夫链状态转移矩

图像的降采样与升采样(二维插值)----转自LOFTER-gengjiwen

图像的降采样与升采样(二维插值) 1.先说说这两个词的概念: 降采样,即是采样点数减少.对于一幅N*M的图像来说,如果降采样系数为k,则即是在原图中 每行每列每隔k个点取一个点组成一幅图像.降采样很容易实现. 升采样,也即插值.对于图像来说即是二维插值.如果升采样系数为k,即在原图n与n+1两点之间插入k-1个点,使其构成k分.二维插值即在每行插完之后对于每列也进行插值. 插值的方法分为很多种,一般主要从时域和频域两个角度考虑.对于时域插值,最为简单的是线性插值.除此之外,Hermite插值,样

蒙特卡洛采样之拒绝采样(Reject Sampling)

引子 蒙特卡洛(Monte Carlo)方法是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为基础的数值计算方法.它的核心思想就是使用随机数(或更常见的伪随机数)来解决一些复杂的计算问题. 当所求解问题可以转化为某种随机分布的特征数(比如随机事件出现的概率,或者随机变量的期望值等)时,往往就可以考虑使用蒙特卡洛方法.通过随机抽样的方法,以随机事件出现的频率估计其概率,或者以抽样的数字特征估算随机变量的数字特征,并将其作为问题的解.这种方法多用于求解复杂的高

SQL Server 查找统计信息的采样时间与采样比例

原文:SQL Server 查找统计信息的采样时间与采样比例 有时候我们会遇到,由于统计信息不准确导致优化器生成了一个错误的执行计划(或者这样表达:一个较差的执行计划),从而引起了系统性能问题.那么如果我们怀疑这个错误的执行计划是由于统计信息不准确引起的.那么我们如何判断统计信息不准确呢?当然首先得去查看实际执行计划中,统计信息的相关数据是否与实际情况有较大的出入,下面我们抛开这个大命题,仅仅从统计信息层面去查看统计信息的更新时间,统计信息的采样行数.采样比例等情况. 1:首先,我们要查查统计信