Linux 内核模块编译 Makefile

驱动编译分为静态编译动态编译;静态编译即为将驱动直接编译进内核,动态编译即为将驱动编译成模块。

而动态编译又分为两种:

a -- 内部编译

在内核源码目录内编译

b -- 外部编译

在内核源码的目录外编译

二、具体编译过程分析  

注:本次编译是外部编译,使用的内核源码是Ubuntu 的源代码,而非开发板所用linux 3.14内核源码,运行平台为X86。

对于一个普通的linux设备驱动模块,以下是一个经典的makefile代码,使用下面这个makefile可以完成大部分驱动的编译,使用时只需要修改一下要编译生成的驱动名称即可。只需修改obj-m的值。


ifneq  ($(KERNELRELEASE),)

obj-m:=hello.o

else

KDIR := /lib/modules/$(shell uname -r)/build

PWD:=$(shell pwd)

all:

make -C $(KDIR) M=$(PWD) modules

clean:

rm -f *.ko *.o *.symvers *.cmd *.cmd.o

endif

1、makefile 中的变量

先说明以下makefile中一些变量意义:

(1)KERNELRELEASE           在linux内核源代码中的顶层makefile中有定义

(2)shell pwd                             取得当前工作路径

(3)shell uname -r                    取得当前内核的版本号

(4)KDIR                                     当前内核的源代码目录。

关于linux源码的目录有两个,分别为

"/lib/modules/$(shell uname -r)/build"

"/usr/src/linux-header-$(shell uname -r)/"

但如果编译过内核就会知道,usr目录下那个源代码一般是我们自己下载后解压的,而lib目录下的则是在编译时自动copy过去的,两者的文件结构完全一样,因此有时也将内核源码目录设置成/usr/src/linux-header-$(shell uname -r)/。关于内核源码目录可以根据自己的存放位置进行修改。

(5)make -C $(LINUX_KERNEL_PATH) M=$(CURRENT_PATH) modules

这就是编译模块了:

a -- 首先改变目录到-C选项指定的位置(即内核源代码目录),其中保存有内核的顶层makefile;

b -- M=选项让该makefile在构造modules目标之前返回到模块源代码目录;然后,modueles目标指向obj-m变量中设定的模块;在上面的例子中,我们将该变量设置成了hello.o。

2、make 的的执行步骤

a -- 第一次进来的时候,宏“KERNELRELEASE”未定义,因此进入 else;

b -- 记录内核路径,记录当前路径;

由于make 后面没有目标,所以make会在Makefile中的第一个不是以.开头的目标作为默认的目标执行。默认执行all这个规则

c -- make -C $(KDIR) M=$(PWD) modules

   -C 进入到内核的目录执行Makefile ,在执行的时候KERNELRELEASE就会被赋值,M=$(PWD)表示返回当前目录,再次执行makefile,modules 编译成模块的意思

所以这里实际运行的是

make -C /lib/modules/2.6.13-study/build M=/home/fs/code/1/module/hello/ modules

d -- 再次执行该makefile,KERNELRELEASE就有值了,就会执行obj-m:=hello.o

obj-m:表示把hello.o 和其他的目标文件链接成hello.ko模块文件,编译的时候还要先把hello.c编译成hello.o文件

可以看出make在这里一共调用了3次

1)-- make
   2)-- linux内核源码树的顶层makedile调用,产生。o文件
   3)-- linux内核源码树makefile调用,把.o文件链接成ko文件

3、编译多文件

若有多个源文件,则采用如下方法:

obj-m := hello.o

hello-objs := file1.o file2.o file3.o

三、内部编译简单说明

如果把hello模块移动到内核源代码中。例如放到/usr/src/linux/driver/中, KERNELRELEASE就有定义了。

在/usr/src/linux/Makefile中有KERNELRELEASE=$(VERSION).$(PATCHLEVEL).$(SUBLEVEL)$(EXTRAVERSION)$(LOCALVERSION)。

这时候,hello模块也不再是单独用make编译,而是在内核中用make modules进行编译,此时驱动模块便和内核编译在一起。

默认的图形界面是很简陋的界面,可以根据需要再安装GNOME或KDE桌面环境

安装X图形界面
#可查询哪些组件是否已经安装(可用来对照组件名称)

yum grouplist

#安装X图形界面系统

yum list 列出所有可安装的软件包 可以通过 yum grouplist 来查看可能批量安装哪些列表 比如 #yum groupinstall "DNS Name Server" //安装 bind 及 bind-chroot 套件

yum groupinstall "X Window System" -y
#安装GNOME桌面环境
yum groupinstall  "GNOME Desktop Environment" -y
#安装KDE桌面环境
yum groupinstall "KDE (K Desktop Environment)"

卸载
卸载GNOME桌面环境
yum groupremove GNOME Desktop Environment‘
卸载KDE桌面环境
yum groupremove ‘K Desktop Environment‘

启动X图形界面的方法
1、startx
2、设置开机自动启动,修改/etc/inittab
            id:3:initdefault:      ------>      id:5:initdefault:
3、init 5

默认桌面环境选择 
  一、设置GNOME或者KDE为默认的启动桌面环境
  方法1:修改/etc/sysconfig/desktop,根据需要将“DESKTOP”后面的参数设置为KDE或GNOME。
  方法2:在当前用户目录下建立“.xinitrc”这个文件,文件的内容就一行startkde或gnome-session。
  二、GNOME和KDE的切换
  1、如果需要切换到GNOME:
  #switchdesk gnome
  2、如果需要切换到KDE:
  #switchdesk kde
  2、如果需要切换到KDE:
  #startkde

图形界面与字符界面的切换
在LINUX中是有多控制台的,其中前6个是字符界面,第七个是图形界面。   
如果你需要切换到字符界面,可以使用CTRL+ALT+Fn来实现,其中Fn是F1-F6中的任何一个,
当然如果你是在字符界面之间互相切换就没必要CTRL了,直接ALT Fn

5)如果在OS启动时需要启动图形化界面,则需要编辑 /etc/inittab 文件的 level 3 换成 level 5

# vi /etc/inittab

id:3:initdefault:

6)可以在 level 3 和 level 5 之间切换

# init 3

# init 5

  1. 初次接触Linux的用户 

    /swap

    缺点:一旦有磁盘有任何问题,根目录将整体毁灭。

  2. 初级分配方式 
    /boot = 1G 

    /usr 
    /home 
    /var 
    /tmp 
    /swap = 2倍内存大小(如果内存较大,swap可适当减小)
    • 提示:/boot 要放在整块硬盘的最前面!(一般分区时,安装系统会主动将其置于最前方)
    • /boot 存放系统引导文件;(由于BIOS原因,boot只能在1024柱面前,否则会找不到。一般只需要100M,但是很多时候系统升级的时候,该目录下会保存旧引导文件)
    • / 根目录;
    • /usr 最庞大的目录,几乎所有应用程序、文件都在这里;
    • /home 用户主目录;
    • /var 某些大文件溢出区、cache存放、email存放;
    • /tmp 公共的临时文件;
    • /swap 虚拟内存交换区。

几种文件类型

    1. ext2/ext3:Linux 适用的文件系统类型。由于ext3文件系统多了日志的记录, 对于系统的复原比较快速,因此建议务必要选择新的ext3不要用 ext2 了。
    2. LVM:用来弹性调整文件系统容量的一种机制, 可以让你的文件系统容量变大或变小而不改变原有的档案数据内容!
    3. RAID:利用Linux操作系统的特性,用软件仿真出磁盘阵列的功能!这东西很棒!不过目前暂时还用不到!
    4. swap:只用于操作系统虚拟内存置换,无法用于挂载。
    5. vfat:如果同时存在Windows/Linux操作系统,则可以选择vfat为虚拟内存置换区。
      • 提示:一般只需要选择ext3或者swap,ext3一般也叫标准模式。

原文地址:https://www.cnblogs.com/klb561/p/9048662.html

时间: 2024-08-03 05:36:47

Linux 内核模块编译 Makefile的相关文章

linux内核模块编译makefile

linux内核可加载模块的makefile 在开发linux内核驱动时,免不了要接触到makefile的编写和修改,尽管网上的makefile模板一大堆,做一些简单的修改就能用到自己的项目上,但是,对于这些基础的东西,更应该做到知其然并知其所以然. 本篇文章中只讨论linux内核模块编译的makefile,linux内核makefile总览可以参考另一篇博客:linux内核makefile概览 本篇博客参考官方文档. linux内核使用的是kbuild编译系统,在编译可加载模块时,其makefi

linux/module.h: No such file or directory 内核模块编译过程

1.缺少Linux kernel头文件 To install just the headers in Ubuntu: sudo apt-get install linux-headers-$(uname -r) To install the entire Linux kernel source in Ubuntu: sudo apt-get install linux-source Note that you should use the kernel headers that match th

linux内核编译与开发

一.Linux内核简介linux kernel map: linux 系统体系结构: linux kernel体系结构: arm有7种工作模式,x86也实现了4个不同级别RING0-RING3,RING0级别最高, 这样linux用户代码运行在RING3下,内核运行在RING0,这样系统本身就得到了 充分的保护 用户空间(用户模式)转到内核空间(系统模式)方法: ·系统调用 ·硬件中断 linux kernel 体系结构: 虚拟文件系统VFS: VFS(虚拟文件系统)隐藏各种文件系统的具体细节,

3、Linux内核模块学习

一.内核模块的学习   内核的整体框架是非常的大,包含的组件也是非常多,如何将需要的组件包含在内核中呢?选择一,就是将所有的组件全部编译进内核,虽然需要的组件都可以使用,但是内核过分庞大,势必带来效率影响:选择二是,将组件编译为模块,需要的时候,就自行加载进内核,这种就是我们称之为的模块,当模块被加载到内核的机制,不仅控制了内核大小,同时被加载的内核与被编译进内核的部分,功能意义.    3.1.内核的加载与卸载     将 hello.c 编译为模块,hello.ko, insmod hell

Linux内核模块编写详解

内核编程常常看起来像是黑魔法,而在亚瑟 C 克拉克的眼中,它八成就是了.Linux内核和它的用户空间是大不相同的:抛开漫不经心,你必须小心翼翼,因为你编程中的一个bug就会影响到整个系统,本文给大家介绍linux内核模块编写,需要的朋友可以参考下 内核编程常常看起来像是黑魔法,而在亚瑟 C 克拉克的眼中,它八成就是了.Linux内核和它的用户空间是大不相同的:抛开漫不经心,你必须小心翼翼,因为你编程中的一个bug就会影响到整个系统.浮点运算做起来可不容易,堆栈固定而狭小,而你写的代码总是异步的,

linux 内核模块函数调用

在编写linux内核模块的时候,有时候我们需要调用一只内核模块里面的函数,然而如果是在不同目录下面编译生成的内核模块,此时A模块去调用B模块的函数时候会出现函数未定义,无法调用的情况.那么以前我是在同一个目录下面,先后写两个makefile,然后编译生成两个不同的内核模块,这种方式可以正常实现A模块调用B模块里面的函数,不过非常麻烦.本博文将会针对这种情况提出一种可以同时生成多个内核模块,不要再次编译的方面,下面贴出源码: 内核模块cal.ko: #include <linux/module.h

Linux内核模块编程与内核模块LICENSE -《详解(第3版)》预读

Linux内核模块简介 Linux内核的整体结构已经非常庞大,而其包含的组件也非常多.我们怎样把需要的部分都包含在内核中呢?一种方法是把所有需要的功能都编译到Linux内核.这会导致两个问题,一是生成的内核会很大,二是如果我们要在现有的内核中新增或删除功能,将不得不重新编译内核. 有没有一种机制使得编译出的内核本身并不需要包含所有功能,而在这些功能需要被使用的时候,其对应的代码被动态地加载到内核中呢?Linux提供了这样的一种机制,这种机制被称为模块(Module).模块具有这样的特点. 模块本

Linux内核模块简介

1. 宏内核与微内核 内核(Kernel)在计算机科学中是操作系统最基本的部分,主要负责管理系统资源.中文版维基百科上将内核分为四大类:单内核(宏内核):微内核:混合内核:外内核. 混合内核实质上也是微内核,而外内核是一种比较极端的设计方法,目前还处于研究阶段,所以我们就着重讨论宏内核与微内核两种内核. 简单的介绍,宏内核(Monolithickernel)是将内核从整体上作为一个大过程来实现,所有的内核服务都在一个地址空间运行,相互之间直接调用函数,简单高效.微内核(Microkernel)功

内核模块编译过程摘要记录

内核模块编译 1.实验原理 Linux模块是一些可以作为独立程序来编译的函数和数据类型的集合.之所以提供模块机制,是因为Linux本身是一个单内核.单内核由于所有内容都集成在一起,效率很高,但可扩展性和可维护性相对较差,模块机制可弥补这一缺陷. Linux模块可以通过静态或动态的方法加载到内核空间,静态加载是指在内核启动过程中加载:动态加载是指在内核运行的过程中随时加载. 一个模块被加载到内核中时,就成为内核代码的一部分.模块加载入系统时,系统修改内核中的符号表,将新加载的模块提供的资源和符号添