LightOJ 1341(Aladdin and the Flying Carpet )算术基本定理

It‘s said that Aladdin had to solve seven mysteries before getting the Magical Lamp which summons a powerful Genie. Here we are concerned about the first mystery.

Aladdin was about to enter to a magical cave, led by the evil sorcerer who disguised himself as Aladdin‘s uncle, found a strange magical flying carpet at the entrance. There were some strange creatures guarding the entrance of the cave. Aladdin could run, but he knew that there was a high chance of getting caught. So, he decided to use the magical flying carpet. The carpet was rectangular shaped, but not square shaped. Aladdin took the carpet and with the help of it he passed the entrance.

Now you are given the area of the carpet and the length of the minimum possible side of the carpet, your task is to find how many types of carpets are possible. For example, the area of the carpet 12, and the minimum possible side of the carpet is 2, then there can be two types of carpets and their sides are: {2, 6} and {3, 4}.

Input

Input starts with an integer T (≤ 4000), denoting the number of test cases.

Each case starts with a line containing two integers: a b (1 ≤ b ≤ a ≤ 1012) where a denotes the area of the carpet and b denotes the minimum possible side of the carpet.

Output

For each case, print the case number and the number of possible carpets.

Sample Input

2

10 2

12 2

Sample Output

Case 1: 1

Case 2: 2

分析:给出整数a和b,求区间[b, a] 内的 a 的约数对的个数,

即满足c*d == a 且 c,d>=b且c!=d。a 的约数对(比如[2, 3] 与 [3, 2] 为同一对)。

PS:

先素数打表一下,然后再运用算术基本定理中的(1)

即可求出正因数的个数,然后再除以2,便是对数,

最后再暴力求解出[1,b]中 a 的正因数个数,相减便是答案!

#include<cstdio>
#include<cmath>
bool a[1000090];
int p[100090],cnt=1;
void prime()
{
    for(int i=4;i<1000001;i+=2) a[i]=1;
    p[0]=2;
    for(int i=3;i<1000001;i++)
    {
        if(!a[i])
        {
            p[cnt++]=i;
            for(int j=i+i;j<1000001;j+=i)
            a[j]=1;
        }
    }
}

long long f(long long N)
{
    long long ans=1;
    long long K=sqrt(N*1.0);
    for(int i=0;p[i]<=N&&i<cnt;i++)
    {
        int temp=1;
        while(N%p[i]==0)
        {
            temp++;
            N/=p[i];
        }
        ans*=temp;
    }
    if(N>1) ans*=2;//即N未除尽
    return ans/2;
}

int main()
{
    int T,cas=1;
    long long N,b;
    scanf("%d",&T);
    prime();
    while(T--)
    {
        scanf("%lld%lld",&N,&b);
        if(b*b>N) printf("Case %d: 0\n",cas++);
        else
        {
            int res=0;
            for(int i=1;i<b;i++)//1~b
                if(N%i==0) res++;
            printf("Case %d: %lld\n",cas++,f(N)-res);
        }
    }
    return 0;
}

原文地址:https://www.cnblogs.com/ACRykl/p/8605684.html

时间: 2024-10-07 04:16:58

LightOJ 1341(Aladdin and the Flying Carpet )算术基本定理的相关文章

[LightOJ 1341] Aladdin and the Flying Carpet (算数基本定理(唯一分解定理))

题目链接: https://vjudge.net/problem/LightOJ-1341 题目描述: 问有几种边长为整数的矩形面积等于a,且矩形的短边不小于b 算数基本定理的知识点:https://baike.baidu.com/item/%E7%AE%97%E6%9C%AF%E5%9F%BA%E6%9C%AC%E5%AE%9A%E7%90%86/10920095?fr=aladdin 1 #include<cstdio> 2 #include<vector> 3 #includ

LightOJ 1341 Aladdin and the Flying Carpet 算数基本定理

题目大意:给出面积n,和最短边m,求能形成的矩形的个数(不能为正方形). 题目思路:根据算数基本定理有: 1.每个数n都能被分解为:n=p1^a1*p2^a2*^p3^a3……pn^an(p为素数); 2.n的正因数的个数sum为:sum=(1+a1)*(1+a2)*(1+a3)……(1+an); 最短边为m,若m>=sqrt(n),则无解.所以m最多我10^6,可遍历找出1-m中n的因子,并用sum去减去这类因子的个数. ps:最近一直想去证明算数基本定理,可是感觉能力不够,唉,慢慢来吧. #

LightOJ 1341 - Aladdin and the Flying Carpet (唯一分解定理 + 素数筛选)

http://lightoj.com/volume_showproblem.php?problem=1341 Aladdin and the Flying Carpet Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Submit Status Practice LightOJ 1341 Description It's said that Aladdin had to solve seven

LightOJ 1341 - Aladdin and the Flying Carpet(算术基本定理啊)

题目链接:http://lightoj.com/volume_showproblem.php?problem=1341 It's said that Aladdin had to solve seven mysteries before getting the Magical Lamp which summons a powerful Genie. Here we are concerned about the first mystery. Aladdin was about to enter

LightOJ 1341 - Aladdin and the Flying Carpet 基本因子分解

http://www.lightoj.com/volume_showproblem.php?problem=1341 题意:给你长方形的面积a,边最小为b,问有几种情况. 思路:对a进行素因子分解,再乘法原理算一下,最后减去小于b的因子的情况即可. /** @Date : 2016-12-01-19.04 * @Author : Lweleth ([email protected]) * @Link : https://github.com/ * @Version : */ #include<b

LightOJ 1341 - Aladdin and the Flying Carpet【合数分解】

题目链接:http://lightoj.com/volume_showproblem.php?problem=1341 题意: 给出整数 a 和 b ,求区间[b, a] 内的 a 的约数对的个数,a 的约数对(比如[2, 3] 与 [3, 2] 为同一对). 解法: 主要利用公式: 一个整数n可以表示为若干素数乘积: n = p1^a1 * p2^a2*-*pm^am; 则 n 的正因数的个数可以表示为: num = (a1+1)*(a2+1)-(am+1); 代码: #include <st

LightOJ 1341 Aladdin and the Flying Carpet(唯一分解定理)

http://lightoj.com/volume_showproblem.php?problem=1341 题意:给你矩形的面积(矩形的边长都是正整数),让你求最小的边大于等于b的矩形的个数. 思路:根据唯一分解定理,把X写成若干素数相乘的形式,则X的正因数的个数为:(1+a1)(1+a2)(1+a3)...(1+an).(ai为指数) 因为这道题目是求矩形,所以知道一个正因数后,另一个正因数也就确定了,所以每组正因数重复计算了两遍,需要除以2. 最后减去小于b的因数. 1 #include<

1341 - Aladdin and the Flying Carpet ---light oj (唯一分解定理+素数筛选)

http://lightoj.com/volume_showproblem.php?problem=1341 题目大意: 给你矩形的面积(矩形的边长都是正整数),让你求最小的边大于等于b的矩形的个数. 什么叫唯一分解定理:算术基本定理可表述为:任何一个大于1的自然数 N,如果N不为质数,那么N可以唯一分解成有限个质数的乘积N=P1a1P2a2P3a3......Pnan,这里P1<P2<P3......<Pn均为质数,其中指数ai是正整数.这样的分解称为 N 的标准分解式 我们求出n的因

Light OJ 1341 Aladdin and the Flying Carpet

It's said that Aladdin had to solve seven mysteries before getting the Magical Lamp which summons a powerful Genie. Here we are concerned about the first mystery. Aladdin was about to enter to a magical cave, led by the evil sorcerer who disguised hi