计数DP(划分数,多重集组合数)

划分数:把n个无区别的物品划分成不超过m组。
dp[i][j]=j的i划分的总数。
dp[i[j]=dp[i][j-i]+dp[i-1][j] 即:将j个物品分成i份,有两种情况:每份划分都大于等于1 dp[i][j-i]; 存在有一份以上用0划分dp[i-1][j]

int main()
{
    int n,m;
    cin>>n>>m;
    dp[0][0]=1;
    for(int i=1;i<=n;i++)
        for(int j=0;j<=n;j++)
        {
            if(j>=i)
                dp[i][j]=dp[i][j-i]+dp[i-1][j];
            else
                dp[i][j]=dp[i-1][j];
        }
    cout<<dp[m][n]<<endl;
    return 0;
}

多重集组合数:n种物品,第i种有a[i]个,从中选取m个,有多少种不同的选择方法?
dp[i+1][j]:从[0, i]号物品中选取j个物品的方法。
dp[i+1][j] = dp[i][j] + dp[i+1][j-1]
这是我们很直观想到的一个递推关系:dp[i][j]表示从i号物品中选0个, dp[i+1][j-1]从i号物品中至少选择1个
实际上,由于是多重集而不是完全集合,我们已经选取了一个i号物品,所以dp[i+1][j-1]表示的不是从i号物品中选择至少一个的数目,因为dp[i+1][j-1]包含了选取a[i]个i号物品(此时总共选择了a[i]+1个物品了),这种情况是应该去掉。需要减去dp[i][j-a[i]-1],所以应该是###dp[i+1][j] = dp[i][j] + dp[i+1][j-1] - dp[i][j-1-a[i]];

void solve()
{
    for(int i=0;i<=n;i++)
        dp[i][0]=1;
    for(int i=0;i<n;i++)
        for(int j=1;j<=m;j++)
        {
            if(j-1>=a[i])
                dp[i+1][j]=(dp[i+1][j-1]+dp[i][j]-dp[i][j-1-a[i]]+mod)%mod;
            else
                dp[i+1][j]=(dp[i+1][j-1]+dp[i][j])%mod;
        }
    cout<<dp[n][m];
}

原文地址:https://www.cnblogs.com/orion7/p/8525094.html

时间: 2024-10-14 04:49:29

计数DP(划分数,多重集组合数)的相关文章

编程算法 - 多重集组合数 代码(C)

多重集组合数 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 有n种物品, 第i种物品有a个. 不同种类的物品可以互相区分, 但相同种类的无法区分. 从这些物品中取出m个, 有多少种取法? 求出数模M的余数. 例如: 有n=3种物品, 每种a={1,2,3}个, 取出m=3个, 取法result=6(0+0+3, 0+1+2, 0+2+1, 1+0+2, 1+1+1, 1+2+0). 使用动态规划(DP). 前i+1种物品取出j个 = 前i

HDU4815/计数DP

题目链接[http://acm.hdu.edu.cn/showproblem.php?pid=4815] 简单说一下题意: 有n道题,每到题答对得分为a[ i ],假如A不输给B的最小概率是P,那么A最少要得到多少分. 解题过程: 假设有n道题,每个题有两个状态,胜或者败,假设达到某个分数m有k(计数DP)种方式,那么最后是这个分数的概率是k/pow(2,n).那么A不输给B的概率就是小于等于m的分数的概率和. #include<bits/stdc++.h> const int maxn =

[sdut]2879计数dp……或者递推

第五届省赛C:colourful cupcakes N=60. 天真如我,居然在考虑搜索的算法/(ㄒoㄒ)/~~三叉树……3^60=10^24+……不计算考虑复杂度都是耍流氓>_< 再算了一下,感觉O(N^4)可以试试,60^4=10^8+……但是毕竟最差的情况嘛>_<,再看一下题解果然是4重循环的……计数……dp……(想到之前坚信的搜索不禁(*/ω\*)) 中间看到了一个三次动规六个方程的算法. 做麻烦了. 学长思路好快. #include<iostream> #in

HDU4901 The Romantic Hero 计数DP

2014多校4的1005 题目:http://acm.hdu.edu.cn/showproblem.php?pid=4901 The Romantic Hero Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Total Submission(s): 393    Accepted Submission(s): 150 Problem Description There i

[计数dp] ural 1114. Boxes

题目链接: http://acm.timus.ru/problem.aspx?space=1&num=1114 1114. Boxes Time limit: 0.6 second Memory limit: 64 MB N boxes are lined up in a sequence (1 ≤ N ≤ 20). You have A red balls and B blue balls (0 ≤ A ≤ 15, 0 ≤ B ≤ 15). The red balls (and the blu

ACM/ICPC算法训练 之 数学很重要-浅谈“排列计数” (DP题-POJ1037)

这一题是最近在看Coursera的<算法与设计>的公开课时看到的一道较难的DP例题,之所以写下来,一方面是因为DP的状态我想了很久才想明白,所以借此记录,另一方面是看到这一题有运用到 排列计数 的方法,虽然排列计数的思路简单,但却是算法中一个数学优化的点睛之笔. Poj1037  A decorative fence 题意:有K组数据(1~100),每组数据给出总木棒数N(1~20)和一个排列数C(64位整型范围内),N个木棒长度各异,按照以下条件排列,并将所有可能结果进行字典序排序 1.每一

CodeForces 176B Word Cut (计数DP)

Word Cut Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u Submit Status Practice CodeForces 176B Description Let's consider one interesting word game. In this game you should transform one word into another through specia

SPOJ ANARC05H 计数DP

给定一个数字串,问有多少种拆分方法,题目所谓的拆分,就是分成若干个子块,每个块的和 即为各个数字相加,当前块的和一定要小于等于后面的块的和 比如1117  就有这些[1-117], [1-1-17], [1-11-7], [1-1-1-7], [11-17],and [111-7] 肯定是计数DP,而且二维即可,不过第二维应该怎么设置是亮点,我也想了好多种方案,不过都被否定了,后来还是一种其实比较经典的方案进来了,就是代表当前最后一个块的和是多少,则当前dp[i][j] 由dp[i-1][k]转

hdu 4901 The Romantic Hero(计数dp)2014多校训练第4场1005

The Romantic Hero                                                                               Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Problem Description There is an old country and the king fell in lov