BZOJ3669:[NOI2014]魔法森林——题解

http://www.lydsy.com/JudgeOnline/problem.php?id=3669

https://www.luogu.org/problemnew/show/P2387

为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士。魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2,3,…,n,边标号为 1,2,3,…,m。初始时小 E 同学在 1 号节点,隐士则住在 n 号节点。小 E 需要通过这一片魔法森林,才能够拜访到隐士。

魔法森林中居住了一些妖怪。每当有人经过一条边的时候,这条边上的妖怪 就会对其发起攻击。幸运的是,在 1 号节点住着两种守护精灵:A 型守护精灵与 B 型守护精灵。小 E 可以借助它们的力量,达到自己的目的。

只要小 E 带上足够多的守护精灵,妖怪们就不会发起攻击了。具体来说,无 向图中的每一条边 ei 包含两个权值 ai 与 bi 。若身上携带的 A 型守护精灵个数不 少于 ai ,且 B 型守护精灵个数不少于 bi ,这条边上的妖怪就不会对通过这条边 的人发起攻击。当且仅当通过这片魔法森林的过程中没有任意一条边的妖怪向 小 E 发起攻击,他才能成功找到隐士。

由于携带守护精灵是一件非常麻烦的事,小 E 想要知道,要能够成功拜访到 隐士,最少需要携带守护精灵的总个数。守护精灵的总个数为 A 型守护精灵的 个数与 B 型守护精灵的个数之和。

(参考洛谷前好几篇题解)

刚开始做的时候是一筹莫展的,但思考一下实际上我们就是找一棵生成树,使得a+b最小。

只是很可惜的是,我们并不能找所谓最小生成树。

但是考虑,我们完全可以固定a的值,添加的边权即为b,这样答案就是a+maxb了。

所以先对边按a排序,然后按照kruskal算法添加边(u,v,b):

如果u和v之间不连通,那么我们就加这条边。

如果u和v之间连通,那么找到u到v之间的路上b最大的,把他cut掉,然后再加。

每次加边之后检查1和n是否连通,如果连通更新ans=min(ans,a+1到n之间路上b最大的)

显然这么做可以保证对于必须添加的边,我们的b是最小的,那么答案的正确性就是显然的。

关键问题是用什么数据结构维护。

考虑连成的图始终是树,且需要支持连边和删边的操作,且需要(动态的)知道一条路径上最大b,我们选用LCT。

那么边权对于LCT不好维护,我们把边权开成点,即X->Y变成X->Z->Y,其中Z的点权为b,这样就可以维护了。

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cctype>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
using namespace std;
const int INF=1e9;
const int N=2e5+10;
const int M=1e5+10;
struct node{
    int u,v,a,b;
}e[M];
int n,m,r,k[N],fa[N],tr[N][2],rev[N],val[N],q[N],num[N];
inline bool cmp(node a,node b){
    return a.a<b.a||(a.a==b.a&&a.b<b.b);
}
inline int read(){
    int X=0,w=0;char ch=0;
    while(!isdigit(ch)){w|=ch==‘-‘;ch=getchar();}
    while(isdigit(ch))X=(X<<3)+(X<<1)+(ch^48),ch=getchar();
    return w?-X:X;
}
inline bool get(int x){
    return tr[fa[x]][1]==x;
}
inline bool isroot(int x){
    if(!fa[x])return 1;
    return tr[fa[x]][0]!=x&&tr[fa[x]][1]!=x;
}
inline void upt(int x){
    int id=val[tr[x][0]],maxb=e[id].b;
    if(maxb<e[val[tr[x][1]]].b)id=val[tr[x][1]],maxb=e[id].b;
    if(maxb<e[num[x]].b)id=num[x],maxb=e[id].b;
    val[x]=id;
}
inline void pushrev(int x){
    if(!rev[x])return;
    swap(tr[x][0],tr[x][1]);
    if(tr[x][0])rev[tr[x][0]]^=1;
    if(tr[x][1])rev[tr[x][1]]^=1;
    rev[x]=0;
}
inline void rotate(int x){
    int y=fa[x],z=fa[y],b=tr[y][0]==x?tr[x][1]:tr[x][0];
    if(z&&!isroot(y))(tr[z][0]==y?tr[z][0]:tr[z][1])=x;
    fa[x]=z;fa[y]=x;b?fa[b]=y:0;
    if(tr[y][0]==x)tr[x][1]=y,tr[y][0]=b;
    else tr[x][0]=y,tr[y][1]=b;
    upt(y);upt(x);
}
inline void splay(int x){
    q[r=0]=x;
    for(int y=x;!isroot(y);y=fa[y])q[++r]=fa[y];
    for(int i=r;i>=0;i--)pushrev(q[i]);
    while(!isroot(x)){
    if(!isroot(fa[x]))
        rotate((get(x)==get(fa[x])?fa[x]:x));
    rotate(x);
    }
    upt(x);
}
inline void access(int x){
    for(int y=0;x;y=x,x=fa[x]){
    splay(x);tr[x][1]=y;
    if(y)fa[y]=x;
    }
}
inline int findroot(int x){
    access(x);splay(x);
    while(pushrev(x),tr[x][0])x=tr[x][0];
    splay(x);
    return x;
}
inline void makeroot(int x){
    access(x);splay(x);
    rev[x]^=1;
}
inline void link(int x,int y){
    makeroot(x);fa[x]=y;
}
inline void cut(int x,int y){
    makeroot(x);access(y);splay(y);
    tr[y][0]=0;fa[x]=0;
}
inline int query(int u,int v){
    makeroot(u);access(v);splay(v);
    return val[v];
}
int main(){
    n=read();m=read();
    for(int i=1;i<=m;i++)
    e[i].u=read(),e[i].v=read(),e[i].a=read(),e[i].b=read();
    sort(e+1,e+m+1,cmp);
    int ans=INF;
    for(int i=1;i<=m;i++){
    int u=e[i].u,v=e[i].v,a=e[i].a,b=e[i].b;
    if(findroot(u)!=findroot(v)){
        num[i+n]=val[i+n]=i;
        link(u,i+n);link(v,i+n);
    }else{
        int t=query(u,v);
        if(e[t].b>b){
        cut(e[t].u,t+n);cut(e[t].v,t+n);
        num[i+n]=val[i+n]=i;
        link(u,i+n);link(v,i+n);
        }
    }
    if(findroot(1)==findroot(n))
        ans=min(ans,e[query(1,n)].b+a);
    }
    printf("%d\n",ans==INF?-1:ans);
    return 0;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

原文地址:https://www.cnblogs.com/luyouqi233/p/8473965.html

时间: 2024-10-17 11:39:34

BZOJ3669:[NOI2014]魔法森林——题解的相关文章

[bzoj3669][Noi2014]魔法森林_LCT_并查集

魔法森林 bzoj-3669 Noi-2014 题目大意:说不明白题意系列++……题目链接 注释:略. 想法:如果只有1个参量的话spfa.dij什么的都上来了. 两个参量的话我们考虑,想将所有的边按照a排序. 如果两个点:它们之间有两条路径,有一条比另一条劣. 那么我们完全可以将另一条弄掉. 排序之后维护生成树. LCT的点维护的是实子树中第二参量的最大值. 如果当前边连接的两点之前不连通,直接连上. 如果联通,我们判断新边的第二参量和两点之间splay的最大参量之间的关系. 如果新边的第二参

BZOJ3669: [Noi2014]魔法森林

传送门 高级数据结构学傻系列 正解似乎是最短路xjb搞,但是用LCT瞎搞搞也是很吼啊. 从贪心开始,按照每条边a的大小随意sort一下. 对于每个边,我们check两点的联通性,如果联通的话取b最大的值,如果大于当前边的b的话就就删除最大边,把这条边加进去. 如果不连通的话直接添加即可. LCT滋次这些操作,所以大力LCT即可. //BZOJ 3669 //by Cydiater //2017.2.16 #include <iostream> #include <queue> #i

bzoj3669: [Noi2014]魔法森林 lct

记得去年模拟赛的时候好像YY出二分答案枚举a,b的暴力,过了55欸 然后看正解,为了将两维变成一维,将a排序,模拟Kruskal的加边过程,同时维护1到n的最大值,加入一条边e(u,v,a,b)时有以下两种情况: 1) 若u,v已连通,则找出u->v上最大的b',若b<b',则替换之,同时更新答案,注意e一定经过1->n,因为去掉b'所在边时1,n一定不连通,若加上e后1,n连通,则必经过e,由于a是有序的,所以a是路径上最大的a,用a+MAX_b[1->n]更新答案即可. 2)否

沉迷Link-Cut tree无法自拔之:[BZOJ3669][Noi2014] 魔法森林

来自蒟蒻 \(Hero \_of \_Someone\) 的 \(LCT\) 学习笔记 $ $ 有一个很好的做法是 \(spfa\) ,但是我们不聊 \(spfa\) , 来聊 \(LCT\) \(LCT\) 做法跟 \(spfa\) 的做法其实有点像, 先将所有的边按 \(a\) 的值从小到大排, 再以 \(b\) 的值为边权来动态的维护最小生成树, 答案即为 当前插入边的 \(a\) 值加上最小生成树中的最大边权 的最小值 $ $ 此外, 用 \(LCT\) 维护 \(MST\) , 就是在

BZOJ3669 NOI2014魔法森林

按a从小到大排序,然后按b建图. 每次只需要找1~n中最大的b加当前的a计算答案即可. 这里还有一个小操作就是化边为点,把一条边的边权看做一个点的点权然后多连两条边. 1 #include<bits/stdc++.h> 2 using namespace std; 3 const int N=4e5+10; 4 int f[N],fa[N],ma[N],pos[N],c[N][2],rev[N],s[N],n,m,ans=2e9,w[N]; 5 struct node{ 6 int x,y,a

bzoj3669 [Noi2014]魔法森林——LCT

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3669 第一道LCT! 主要是看这个博客理解学LCT板子:https://blog.csdn.net/yxuanwkeith/article/details/50991326 关于这道题,又看了看这个博客:https://blog.csdn.net/clove_unique/article/details/51317842 然后努力抄写了半天,成功AC! 代码中 //// 的地方是我还有点不

【BZOJ3669】[Noi2014]魔法森林 LCT

[BZOJ3669][Noi2014]魔法森林 Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节点1,隐士则住在号节点N.小E需要通过这一片魔法森林,才能够拜访到隐士. 魔法森林中居住了一些妖怪.每当有人经过一条边的时候,这条边上的妖怪就会对其发起攻击.幸运的是,在号节点住着两种守护精灵:A型守护精灵与B型守护精灵.小E可以借助它们的力量,达到自

NOI2014 魔法森林

3669: [Noi2014]魔法森林 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 106  Solved: 62[Submit][Status] Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节点1,隐士则住在号节点N.小E需要通过这一片魔法森林,才能够拜访到隐士. 魔法森林中居住了一些妖怪.

bzoj 3669: [Noi2014]魔法森林

3669: [Noi2014]魔法森林 Time Limit: 30 Sec  Memory Limit: 512 MB 动点spfa Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节点1,隐士则住在号节点N.小E需要通过这一片魔法森林,才能够拜访到隐士. 魔法森林中居住了一些妖怪.每当有人经过一条边的时候,这条边上的妖怪就会对其发起攻击.幸运的