欧几里德算法gcd及其拓展终极解释

这个困扰了自己好久,终于找到了解释,还有自己改动了一点点,耐心看完一定能加深理解

扩展欧几里德算法-求解不定方程,线性同余方程。
  设过s步后两青蛙相遇,则必满足以下等式:
    (x+m*s)-(y+n*s)=k*l(k=0,1,2....)
  稍微变一下形得:
    (n-m)*s+k*l=x-y
令n-m=a,k=b,x-y=c,即
    a*s+b*l=c
  只要上式存在整数解,则两青蛙能相遇,否则不能。
  首先想到的一个方法是用两次for循环来枚举s,l的值,看是否存在s,l的整数解,若存在则输入最小的s,
但显然这种方法是不可取的,谁也不知道最小的s是多大,如果最小的s很大的话,超时是明显的。
  其实这题用欧几里德扩展原理可以很快的解决,先来看下什么是欧几里德扩展原理:
  欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:
  定理:gcd(a,b) = gcd(b,a mod b)
  证明:a可以表示成a = kb + r,则r = a mod b
  假设d是a,b的一个公约数,则有
  d|a, d|b,而r = a - kb,因此d|r
  因此d是(b,a mod b)的公约数
  假设d 是(b,a mod b)的公约数,则
 d | b , d |r ,但是a = kb +r
  因此d也是(a,b)的公约数
  因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证
  欧几里德算法就是根据这个原理来做的,其算法用C++语言描述为: 
  int Gcd(int a, int b)   {   if(b == 0)   return a; return Gcd(b, a % b);   }
  当然你也可以写成迭代形式:
  int Gcd(int a, int b)   {   while(b != 0)   {   int r = b;    b = a % b;    a = r;   }   return a;   }
  本质上都是用的上面那个原理。
  补充: 扩展欧几里德算法是用来在已知a, b求解一组x,y使得a*x+b*y=Gcd(a,b)(解一定存在,根据数论中的相关定理)。扩展欧几里德常用在求解模线性方程及方程组中。下面是一个使
用C++的实现:
  int exGcd(int a, int b, int &x, int &y)   {   if(b == 0)   {   x = 1;   y = 0;    return a;   }   int r = exGcd(b, a % b, x, y);   int t = x;   x = y;   y = t - a / b * y;    return r;   }  
把这个实现和Gcd的递归实现相比,发现多了下面的x,y赋值过程,这就是扩展欧几里德算法的精髓。
  可以这样思考:
  对于a‘ = b, b‘ = a % b 而言,我们求得 x, y使得 a‘x + b‘y = Gcd(a‘, b‘)
  由于b‘ = a % b = a - a / b * b (注:这里的/是程序设计语言中的除法)
  那么可以得到:
  a‘x + b‘y = Gcd(a‘, b‘) ===>   bx + (a - a / b * b)y = Gcd(a‘, b‘) = Gcd(a, b) ===>   ay +b(x - a / b*y) = Gcd(a, b)
  因此对于a和b而言,他们的相对应的p,q分别是 y和(x-a/b*y).
求解 x,y的方法的理解
  设 a>b。
  1,显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;
  2,ab<>0 时
  设 ax1+by1=gcd(a,b);
  bx2+(a mod b)y2=gcd(b,a mod b);
  根据朴素的欧几里德原理有 gcd(a,b)=gcd(b,a mod b);
  则:ax1+by1=bx2+(a mod b)y2;
  即:ax1+by1=bx2+(a-(a/b)*b)y2=ay2+bx2-(a/b)*by2;
  根据恒等定理得:x1=y2; y1=x2-(a/b)*y2;
  这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.
  上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以
 结束。
  在网上看了很多关于不定方程方程求解的问题,可都没有说全,都只说了一部分,看了好多之后才真正弄清楚不定方程的求解全过程,步骤如下:
  求a * x + b * y = c的整数解。
  1、先计算Gcd(a,b),若n不能被Gcd(a,b)整除,则方程无整数解;否则,在方程两边同时除以Gcd(a,b),得到新的不定方程a‘ * x + b‘ * y = c‘,此时Gcd(a‘,b‘)=1;
2、利用上面所说的欧几里德算法求出方程a‘ * x + b‘ * y = 1的一组整数解x0,y0,则c‘ * x0,c‘ * y0是方程a‘ * x + b‘ * y = c‘的一组整数解;
  3、根据数论中的相关定理,可得方程a‘ * x + b‘ * y = c‘的所有整数解为:

    其实我们求得的解只是一组,

    a*x0+lcm(a,b)+b*y0-lcm(a,b)=1;

    a*x                +b*y              =1;

    x=x0+b/gcd(a,b);y=y0-a/gcd(a,b);

    a/gcd(a,b)*x‘+b/gcd(a,b)*y‘=c/gcd(a,b);

    x‘=c/gcd(a,b)*x0+b/gcd(a,b);y‘=c/gcd(a,b)*y0-a/gcd(a,b);

x = c‘ * x0 + b‘ * t y = c‘ * y0 - a‘ * t (t为整数)
    上面的解也就是a * x + b * y = n 的全部整数解
时间: 2024-09-30 14:12:59

欧几里德算法gcd及其拓展终极解释的相关文章

欧几里德算法 GCD

留坑 ,未完... 1 int gcd(int m,int n) 2 { 3 int r; 4 while( (r=m%n)>0) 5 { 6 m=n; 7 n=r; 8 } 9 return n; 10 }

图解 欧几里德算法

把整数看成保持面积不变,可以重排为长宽为整数的矩阵 取两个整数的最大公因子,可以看作把两个整数重排后保持一端对齐,求对齐端的最大长度 当两个整数一端对齐时,他们的差也保持对其.所以原问题问题gcd(m,n)能归结为gcd(m-n,n) 最终其中的一者成为长=1,宽=gcd(m,n)的矩形,算法终结 而不断的减这一过程就是除法的直观描述,算法中循环减的过程可优化为除法取余的过程 以上,得到了基于减法与基于除法的两种欧几里德算法图像上的直观解释 原文地址:https://www.cnblogs.co

如何使用循环而不是递归反推的方式实现拓展欧几里德算法

平常我们使用拓展欧几里德算法求pm + qn = gcd(m, n)这种表示时,一般都会选择递归的方式来实现,因为欧几里得算法的递归深度最多也只有O(lgn), according to lame's theorem,所以这个递归用栈是可以忽略的. 但其实只需要循环就可以求出一组pm + qn = gcd(m, n)的表示,将栈深度保持在O(1),这样的写法在使用函数调用的高级语言中看起来复杂一点但在汇编编程时就显得比较简单. 方法是假设第k次迭代中的两个数分别为 M(k) 和 N(k),我们始

扩展欧几里德算法

文章来源:http://blog.csdn.net/zhjchengfeng5/article/details/7786595 谁是欧几里德?自己百度去 先介绍什么叫做欧几里德算法 有两个数 a b,现在,我们要求 a b 的最大公约数,怎么求?枚举他们的因子?不现实,当 a b 很大的时候,枚举显得那么的na?ve ,那怎么做? 欧几里德有个十分又用的定理: gcd(a, b) = gcd(b , a%b) ,这样,我们就可以在几乎是 log 的时间复杂度里求解出来 a 和 b 的最大公约数了

POJ 2773 Happy 2006(欧几里德算法)

题意:给出一个数m,让我们找到第k个与m互质的数. 方法:这题有两种方法,一种是欧拉函数+容斥原理,但代码量较大,另一种办法是欧几里德算法,比较容易理解,但是效率很低. 我这里使用欧几里德算法,欧几里德算法又名辗转相除法,原先单纯的用于求最大公约数,这里也算是一个小小的拓展应用,这个题利用的欧几里德算法的重要性质,假如a与b互质,那么b*t+a与b也一定互质,那样我们可以枚举1-m之间所有符合条件的数,然后打一个表格,求出所有符合条件的数,正如下表中的(5,5)所示,这个表格是一个带有周期性的自

扩展欧几里德算法详解

扩展欧几里德算法 谁是欧几里德?自己百度去 先介绍什么叫做欧几里德算法 有两个数 a b,现在,我们要求 a b 的最大公约数,怎么求?枚举他们的因子?不现实,当 a b 很大的时候,枚举显得那么的na?ve ,那怎么做? 欧几里德有个十分又用的定理: gcd(a, b) = gcd(b , a%b) ,这样,我们就可以在几乎是 log 的时间复杂度里求解出来 a 和 b 的最大公约数了,这就是欧几里德算法,用 C++ 语言描述如下: 由于是用递归写的,所以看起来很简洁,也很好记忆.那么什么是扩

Sicily1099-Packing Passengers-拓展欧几里德算法

最终代码地址:https://github.com/laiy/Datastructure-Algorithm/blob/master/sicily/1099.c 做这题的时候查了别人的做法花了半天都没搞明白怎么做的,我认为别的博客写的难以让人理解所以就造了这个轮子. 题目: 1099. Packing Passengers Constraints Time Limit: 1 secs, Memory Limit: 32 MB Description PTA, Pack ‘em Tight Air

扩展欧几里德算法的应用

感谢:http://blog.csdn.net/u014634338/article/details/40210435 扩展欧几里德算法的应用主要有以下三方面: (1)求解不定方程: (2)求解模的逆元: (3)求解模线性方程(线性同余方程): 一.解不定方程 对于不定整数方程pa+qb=c, 1.若 c mod gcd(p, q)=0,则该方程存在整数解,否则不存在整数解.   2.在找到p * a+q * b = gcd(p, q)的一组解p0,q0后,p * a+q * b = gcd(p

欧几里德算法(自写理解)

gcd欧几里德算法  求取最大公约数gcd(a,b) 这个不用多说了 extgcd拓展欧几里德算法 用于求解 ax+by=gcd(a,b)的解 这个要多说一下 ax+by=c,(a,b,c都是常数) 这就是一个直线方程嘛!(x,y)就是一条直线的轨迹 但是呢  我们在计算机中经常要求一些离散的东西,也就是我们要求整数解 这个咋求呢,就可以用这个神仙方法extgcd可以来求 我们可以用extgcd求解 ax+by=c的整数点的解 extgcd的内容呢:extgcd可以能求gcd----原理嘛,自己