线性模型(2) -- 广义线性模型

提纲:

  1. 回顾多元线性回归
  2. 广义线性模型的基本形式
  3. 对数线性回归
  4. 学习和参考资料

1.回顾多元线性回归

在上一篇随笔中,说到了线性模型中最基本的一种--多元线性回归,其基本形式如图一所示:

图一

在多元线性回归中,模型的预测值都分布在一条直线上,所以只有当样本点的真实分布大致与所求到的直线的形状相同时,模型才能工作得很好。情况大致如图二所示:

图二

在图二中,我们认为样本点的分布是线性变化的,所以我们模型的预测值直接逼近样本点的真实值y本身,但在现实生活中,很多时候样本点的分布并非像图二所示,那么我们有没有一种模型,可以让线性模型推广开来,适应更多现实中的情况呢?假设我们有一个像图三一样的样本点集合;

图三

在学习如何让模型的预测值逼近如图三的直线之前,我们先来看一下什么是广义线性模型。

2.广义线性模型的基本形式

广义线性模型的基本形式如图四:

图四

其中,g(·)为联系函数(link function),作用是将线性回归模型的预测值与真实值y联系起来,它是一个单调可微函数,形如图四的模型叫“广义线性模型”。

说白了,广义线性模型就是给线性回归模型的预测值穿上个小马甲,例如,假设有个样本点集合,样本点的分布如图三所呈现,即真实值y是在指数尺度上变化,我们希望线性回归的预测值会逼近如图三的分布,那么,我们就应该根据样本点的真实值y是呈指数变化的这个特点,给线性回归模型的预测值穿上指数变化小马甲,而g(·)这个函数,就是起到一个马甲的作用。

图五

3.对数线性回归

对数线性回归是g(·)=ln(·)时的特例,可以适应样本点集合的真实标记值y呈现如图三中的变化时的情况。

当g(·)=ln(·)时,y=e^(wT*x+b),具体推导过程如图六所示:

图六

4.学习和参考资料

周志华老师的《机器学习》,清华大学出版社。

时间: 2024-08-30 08:51:02

线性模型(2) -- 广义线性模型的相关文章

从统计学角度来看深度学习(1):递归广义线性模型

从统计学角度来看深度学习(1):递归广义线性模型 原文链接:http://blog.shakirm.com/2015/01/a-statistical-view-of-deep-learning-i-recursive-glms/ 作者:Shakir Mohamed        翻译:王小宁      审校:冯凌秉  朱雪宁   编辑:王小宁 本文得到了原英文作者Shakir Mohamed的授权同意,由王小宁翻译.冯凌秉和朱雪宁审校.感谢他们的支持和帮助. 深度学习及其应用已经成为实用机器学

从指数分布族去推导出广义线性模型

指数分布族的定义: 若一类概率分布可以写成如下形式,那么它就属于指数分布族: η - 自然参数,通常是一个实数 T(y) – 充分统计量,通常,T(y)=y,实际上是一个概率分布的充分统计量(统计学知识) 对于给定的a,b,T三个函数,上式定义了一个以η为参数的概率分布集合,即改变η可以得到不同的概率分布.极限定理得) 记录一下几个指数分布族以及它们的特征: 正态分布(高斯分布)--总体噪音(由中心极限定理得) 伯努利分布--逻辑回归(对01问题建模) 多项式分布--K种结果的事情进行建模 泊松

1.1.广义线性模型

下面介绍的是一组用于回归的方法,这些方法的目标值是输入变量的线性组合.用作为预测值. 贯穿模块,我们指定向量为coef_(系数),为intercept_(截距). 要使用广义线性模型实现分类,详见Logistic回归. 1.1.1.常规最小二乘法 线性回归拟合以系数最小化可观测到的数据的响应与线性模型预测的响应的残差和的平方,用数学公式表示即: LinearRegression 对数组X,y使用fit方法,并将结果的系数存放在coef_中: >>> from sklearn import

斯坦福《机器学习》Lesson4感想-------2、广义线性模型

在前面几篇中分类问题和回归问题里涉及到的伯努利分布和高斯分布都是广义线性模型(Generative Linear Models.GLMs)的特例.下面将详细介绍广义线性模型. 1.指数族 我们可以将一些分布总结到一个指数族中.指数族可表示为: η是指naturalparameter/canonical parameter,T (y)是指sufficientstatistic, a(η)是指logpartition function.T.a和b的选择决定了分布族,η的改变会得到这个分布族里的不同分

R语言实战(八)广义线性模型

本文对应<R语言实战>第13章:广义线性模型 广义线性模型扩展了线性模型的框架,包含了非正态因变量的分析. 两种流行模型:Logistic回归(因变量为类别型)和泊松回归(因变量为计数型) glm()函数的参数 分布族 默认的连接函数 binomial (link = "logit") gaussian (link = "identity") gamma (link = "inverse") inverse.gaussian (lin

指数分布族与广义线性模型

整理一下之前所学过的关于回归问题的思路: 问题引入:房屋估价,给定新的房屋信息,预测出相应的房屋价格: 学习过程:构建模型h(θ): 线性回归:最小二乘法.梯度下降法.线性模型的概率解释: 局部加权回归:带权重的线性回归.权值的钟形函数: 逻辑回归:分类方法.梯度上升法.牛顿法.引出感知机学习算法: 广义线性模型:指数分布族.给定概率分布推导出线性模型. 这一节所讨论的重点就是最后的这一条内容,回顾讨论过的线性回归与逻辑回归的假设可知: 在线性回归模型的概率解释中假设: 在逻辑回归模型的推导中假

Stanford大学机器学习公开课(四):牛顿法、指数分布族、广义线性模型

(一)牛顿法解最大似然估计 牛顿方法(Newton's Method)与梯度下降(Gradient Descent)方法的功能一样,都是对解空间进行搜索的方法.其基本思想如下: 对于一个函数f(x),如果我们要求函数值为0时的x,如图所示: 我们先随机选一个点,然后求出该点的切线,即导数,延长它使之与x轴相交,以相交时的x的值作为下一次迭代的值. 更新规则为: 那么如何将牛顿方法应用到机器学习问题求解中呢? 对于机器学习问题,我们优化的目标函数为极大似然估计L,当极大似然估计函数取得最大时,其导

广义线性模型与Logistic回归

一.广义线性模型 广义线性模型应满足三个假设: 第一个假设为给定X和参数theta,Y的分布服从某一指数函数族的分布. 第二个假设为给定了X,目标是输出 X条件下T(y)的均值,这个T(y)一般等于y,也有不等的情况, 第三个假设是对假设一种的变量eta做出定义. 二.指数函数族 前面提到了指数函数族,这里给出定义,满足以下形式的函数构成了指数函数族: 其中a,b,T都是函数. 三.Logistic 函数的导出 Logistic回归假设P(y|x)满足伯努利Bernouli分布即 我们的目标是在

数学之路-数据分析进阶-广义线性模型

在统计学上, 广义线性模型 (Generalized linear model) 是一种受到广泛应用的线性回归模式.此模式假设实验者所量测的随机变量的分布函数与实验中系统性效应(即非随机的效应)可经由一链结函数(link function)建立起可资解释其相关性的函数. 广义线性模型(generalized linear model, GLM)是简单最小二乘回归(OLS)的扩展,在广义线性模式中,假设每个资料的观测值来自某个指数族分布. 该分布的平均数  可由与该点独立的X解释: 其中为的期望值