A Collection of Beautiful Theorem Proofs

  There is a popular topic discussed in Quora about the most beautiful theorem proof, which I found most interesting.

  Now I list the ten classical thereom proofs that I fancy most.  May you enjoy them! :-)

  1. Euclid‘s proof of Pythagorean Theorem;

  2. Euclid‘s proof of the Infinitude of Primes;

  3. The proof of Wilson‘s Theorem;

  4. The proof of Fermat‘s Little Theorem;

  5. The proof that an irrational number raised to an irrational power may yield a rational result.

  6. The Diagonal Method to prove Cantor‘s Theorem;

  7. The proof of Gödel‘s Incompleteness Theorem;

  8. The proof of Schröder–Bernstein theorem;

  9. The proof of Euler‘s Polyhedron Formula.  

  10. The proof that 

时间: 2024-11-05 15:52:58

A Collection of Beautiful Theorem Proofs的相关文章

[转]A plain english introduction to cap theorem

Kaushik Sathupadi Programmer. Creator. Co-Founder. Dad. See all my projects and blogs → A plain english introduction to CAP Theorem You’ll often hear about the CAP theorem which specifies some kind of an upper limit when designing distributed systems

遍历Collection集合中的6种方法:

下面的代码演示了遍历Collection集合的6种方法,注意Collection集合的遍历远不止于增强for循环,和迭代器两种. 代码如下: 1 package com.qls.traverse; 2 3 import java.util.ArrayList; 4 import java.util.Arrays; 5 import java.util.Collections; 6 import java.util.Enumeration; 7 import java.util.Iterator;

Note for "Some Remarks on Writing Mathematical Proofs"

John M. Lee is a famous mathematician, who bears the reputation of writing the classical book "Introduction to Smooth Manifolds". In his article, "Some Remarks on Writing Mathematical Proofs", he gives us concrete and complete suggesti

Sampling Distributions and Central Limit Theorem in R(转)

The Central Limit Theorem (CLT), and the concept of the sampling distribution, are critical for understanding why statistical inference works. There are at least a handful of problems that require you to invoke the Central Limit Theorem on every ASQ

Tychonov Theorem

(Remark: The proof presented in this post is a reorganization and interpretation of that given by James Munkres in his book "Topology".) Theorem 37.3 (Tychonov Theorem) The product of arbitrary number of compact spaces is compact in the product

Wilson's Theorem

ProofsSuppose first that $p$ is composite. Then $p$ has a factor $d > 1$ that is less than or equal to $p-1$. Then $d$ divides $(p-1)!$, so $d$ does not divide $(p-1)! + 1$. Therefore $p$ does not divide $(p-1)! + 1$. Two proofs of the converse are p

SharePoint 2010/SharePoint 2013 Custom Action: 基于Site Collection 滚动文字的通知.

应用场景: 有时候我们的站点需要在每个页面实现滚动文字的通知,怎么在不修改Master Page的情况下实现这个功能?我们可以使用Javascript 和 Custom Action 来实现. 创建一个Custom Action.主要使用到 Location = 'ScriptLink' 属性, 该属性可以动态的加载JavaScript 文件链接和代码块到模板页.代码如下: <Elements xmlns="http://schemas.microsoft.com/sharepoint/&

从头认识java-15.2 Collection的常用方法

这一章节我们来介绍一下Collection的常用方法. 我们下面以ArrayList为例. package com.ray.ch14; import java.util.ArrayList; import java.util.Iterator; public class Test { public static void main(String[] args) { ArrayList<Integer> rtnList = new ArrayList<Integer>(); rtnL

计算理论中的莱斯定理(Rice&#39;s Theorem)——证明与应用

我们给出一个在探讨不可判定性时非常有用的结论--莱斯定理(Rice's Theorem).首先,我们来看前面讨论过的几个不可判定的例子: 这些都是由图灵机识别之语言的性质.而莱斯定理告诉我们,任何由图灵机识别之语言的非平凡性质(nontrivial property)都是不可判定的. 最后通过几个例子来探讨一下莱斯定理的应用.来看看下面这个语言能否使用莱斯定理来确定其可判定性. {<M> | M是一个TM,且L(M)可由一些拥有偶数个状态的图灵机识别} 首先来确定这是否是一个语言属性,显然是的