Computer Vision的尴尬---by林达华

Computer Vision的尴尬---by林达华

Computer Vision是AI的一个非常活跃的领域,每年大会小会不断,发表的文章数以千计(单是CVPR每年就录取300多,各种二流会议每年的文章更可谓不计其数),新模型新算法新应用层出不穷。可是,浮华背后,根基何在?
对于Vision,虽无大成,但涉猎数年,也有管窥之见。Vision所探索的是一个非常复杂的世界,对于这样的世界如何建模,如何分析,却一直没有受普遍承认的理论体系。大部分的研究工作,循守着几种模式:
o    从上游学科(比如立体几何,机器学习,优化等等)获取现成方法,略加变化,套用于某一具体应用。 
o    对现有的某个模型方法的一些不足之处,加以改进,比如在formulation中加入或者简并参数,或者调整求解过程。 
o    选择多个方法组成一个应用系统。 
这些工作实实在在解决了很多问题,功不可没。然其不足在于,一事一法,难成积淀。故此,每年新发表之工作,虽汗牛充栋,蔚为大观,就核心学理,与十年二十年前之状态相比,没有根本突破。
过去一年,在导师们的启发下,涉猎一些其它学科,方知学问之博大,自己以往却是一直坐井观天。在这里其实非常感谢Alan的启发,他一般没有很具体的指导,但是他往往会说“你可以看看某某领域,这个问题可能在几十年前已经被他们在另外一个context下面解决了。”刚开始的时候,我不是很服气——我在Vision的literature的survey表明它在vision里面确实是新问题——不过,当我看到那些领域的文章的时候,不得不佩服Alan的广博知识和对根本不同的领域中的相似问题的洞察力。
我不打算具体讨论一个topic,但是,我建议做vision的朋友在有时间的时候去看看一些表面应用完全不同,但是核心学理却是相通的领域。 
o    做Sampling, particle filtering的,不妨看看统计物理学(Statistical Physics),他们对于蒙特卡罗方法已经应用数十年,积累极深,很可能在vision或者learning提出的一些新方法,已经是被他们以另外一种形式或者名称提出过了。
o    做Tracking, video, 和optimization的,可以看看控制论(Control theory)。控制科学对于动态系统(或者其它随时间变化的过程)的研究极为透彻。Alan本来是做控制的,正式他几次强烈的建议下,我才去看动态系统论和控制论,看过一些章节后有如醍醐灌顶。我曾经自己花了不少时间导出的一组矩阵微分方程的解,就是control theory里面已有深入探讨的Peano-Baker series在一定条件下的形式。至于做传导模型或者semi-supervised learning的,控制论中的许多观点和方法也是很有帮助的。
o    做Graphical model,和各种统计模型的,信息论(information theory)是肯定必要的,这个不用我在这啰嗦了。有一门叫做信息几何学(information geometry),也值得一观。
比较之下方显差距。很多做Vision的朋友都是理论爱好者,喜欢在paper里面列举公式以彰显“理论深度”——可是,我看过的大部分的文章中的公式推演,一般都是循规蹈矩的推导,其水平未必胜于求解一道经典教科书中的数学习题。诚然,这种推理演绎是整个研究中不可缺少的部分,写在文章中也无可厚非,但是,如果仅此则把推演结果列为theoretical contribution,则不免为过了。真正意义的理论贡献者,不在文中公式多寡,也不在数学深浅,而在于是否能对问题的内在原理展开深入剖析,有所发现,言人之未尝言,给人以新的启发。
作为经典物理基础的牛顿三定律,从现在vision领域的眼光看来,不过是对实验的总结,所得结论,除了第二定律有一简单乘法公式(往高深处说,也不过是常系数线性二阶常微分方程)之外,并无太多数学深入其中。虽如此,经典物理的巍峨大厦由此奠定。也许这个例子类比Vision的研究,未必恰当,但是,它起码可以说明,理论贡献之义在于去芜存菁,也就是排开纷繁复杂的表象,发掘那个深刻但是简单的规律。可是,在vision paper宣称的理论贡献中,有多少循此义而行,又有多少在铅华净尽之后留传下来。
纵理论上根基不足,但Vision终究是应用学科,若能广泛应用则其意义必能发扬。虽然经过几十年努力,vision确实在社会生活中有了不少各种应用,不过比起其它学科则相形见拙。且不说诸如通信,软件工程之类早已在全球形成庞大产业,与vision有更多联系的video coding,signal processing, 和medical image,其应用之深广也为vision所望尘莫及。vision没能形成应有的工业应用,一则确实是它面临的实际问题困难重重,实用水平不易达到,二则与我们的研究在相当程度上脱离实际有着很大关联。
以我以往在香港学习时所做的face recognition来说,这是一个应用性很强的topic,历史也不短,但在实际条件下的识别水平,做这个的朋友也心里明白。很多人在研究这个topic,发表的“新方法”也不少,在paper上识别正确率不达到90%是拿不出手的——可是在那几个标准库(即使是最新的FRGC)上做出的性能和实际的有多大的差距?很多工作assume头像区域都对齐良好,光照条件规则,在此条件下研究出来的算法即使能达到100%的识别性能,在环境极为复杂的条件下能真的应用么?直到今天,大批文章仍在乐此不疲地讨论各种subspace, kernel, svm, boosting的变化花样,却从不思考人脸识别的真正要素所在,难道不是舍本逐末之举。 
与此同时,许多在实际工程实践中的trick,为性能提高立下汗马功劳,却因为没有“理论深度”,不登大雅之堂,即使见诸论文,也是在实验部分草略带过。然而,一个方法,无论其最初提出是否有理论依据,如果确实能解决问题,则必有其原因。若能静下心来,暂时忘记那些仅凭思辨就形成的所谓美妙理论,下功夫探究一些确实能解决问题的方法背后所原之学理,其意义不是更大么。也许每个这样的工作都很细小,真能积累下来,假以时日,在推动某个方面的应用上必有实实在在的进益。其中,也可能有机会总结出一些真正有价值的理论。
自诞生以来,Vision的发展已历数十年,不过和许多领域相比,仍处于初始阶段,根基尚显孱弱混乱。唯因如此,对身处其中的研究者,更具挑战意义,而每一个真正的贡献也显得特别有价值。治学之道,不在追逐潮流,而在深原其理。这是新学期新帐号第一次写blog,谨以此,和每一位热爱研究的朋友共勉。

时间: 2024-12-08 20:27:03

Computer Vision的尴尬---by林达华的相关文章

【综述】(MIT博士)林达华老师-"概率模型与计算机视觉”

[综述](MIT博士)林达华老师-"概率模型与计算机视觉” 距上一次邀请中国科学院的樊彬老师为我们撰写图像特征描述符方面的综述(http://www.sigvc.org/bbs/thread-165-1-1.html)之后,这次我们荣幸地邀请到美国麻省理工学院(MIT)博士林达华老师为我们撰写“概率模型与计算机视觉”的最新综述.这次我们特别增设了一个问答环节,林老师针对论坛师生提出的许多问题(如概率图模型与目前很热的深度神经网络的联系和区别)一一做了详细解答,并附在综述的后面. 林达华老师博士毕

林达华推荐的几本数学书

林达华推荐的几本数学书 转自:http://dahua.spaces.live.com/default.aspx 1. 线性代数 (Linear Algebra): 我想国内的大学生都会学过这门课程,但是,未必每一位老师都能贯彻它的精要.这门学科对于Learning是必备的基础,对它的透彻掌握是必不可少的.我在科大一年级的时候就学习了这门课,后来到了香港后,又重新把线性代数读了一遍,所读的是 Introduction to Linear Algebra (3rd Ed.)  by Gilbert

[转]林达华推荐的几本数学书

http://blog.csdn.net/lqhbupt/article/details/32106217 Dahua Lin早在几年前就已经冒尖出来了,现在在MIT攻读博士学位,前途不可限量.他总是有无穷的精力,学习,同时几篇几篇的写paper,几万行几万行的写code,几万字几万字的写blog.他扎实的数学功底和相关知识的功底,以及深睿的洞察和理解问题的能力,注定他将在machine learning和computer vision等相关领域取得大量的成果,甚至是突破性的成果.期待他在这些领

【机器学习系列】机器学习界大牛林达华推荐的书籍

Recommended Books Here is a list of books which I have read and feel it is worth recommending to friends who are interested in computer science. Machine Learning Pattern Recognition and Machine Learning Christopher M. Bishop A new treatment of classi

机器学习界大牛林达华推荐的书籍[转]

Recommended Books Here is a list of books which I have read and feel it is worth recommending to friends who are interested in computer science. Machine Learning Pattern Recognition and Machine Learning Christopher M. Bishop A new treatment of classi

Recommended Books [机器学习界大牛林达华推荐的书籍]

Here is a list of books which I have read and feel it is worth recommending to friends who are interested in computer science. Machine Learning Pattern Recognition and Machine Learning Christopher M. Bishop A new treatment of classic machine learning

[Z]牛人林达华推荐有关机器学习的数学书籍

1. 线性代数 (Linear Algebra): 我想国内的大学生都会学过这门课程,但是,未必每一位老师都能贯彻它的精要.这门学科对于Learning是必备的基础,对它的透彻掌握是必不可少的.我在科大一年级的时候就学习了这门课,后来到了香港后,又重新把线性代数读了一遍,所读的是 Introduction to Linear Algebra (3rd Ed.)  by Gilbert Strang. 这本书是MIT的线性代数课使用的教材,也是被很多其它大学选用的经典教材.它的难度适中,讲解清晰,

(转自林达华)深入问题本身

很多做research的朋友喜欢top-downapproach,包括我自己.就是说,在开始一个topic的时候,在第一时间就设定了大体的formulation,model又或者methodology.至于选择哪种设定,往往取决于研究者本身的偏好,知识背景,或者对问题的第一反应. 接下来的事情就顺理成章了,推导数学模型和相关公式以及算法步骤,然后设计程序进行实验.当然少不了再拉上几个相关工作,比较一番.如果自己的设计很幸运地有明显的improvement,于是非常满意,开始写paper(在不少情

My Reading List - Machine Learning && Computer Vision

本博客汇总了个人在学习过程中所看过的一些论文.代码.资料以及常用的资源与网站,为了便于记录自身的学习过程,将其整理于博客之中. Machine Learning (1) Machine Learning Video Library - Caltech说明:罗列了机器学习的常用算法以及机器学习图谱 (2) Deep Learning - Bengio 说明:Deep Learning三大牛之一Bengio写的一本书 (3) Understanding LSTM Networks 说明:非常棒的LS