Saving Beans 组合数学之 Lucas定理

                   Saving Beans

题目抽象:有n颗水果树,每科树上有无穷多个水果(同一棵树上的水果相同)。现在要从这n棵树上取不超过m个水果,有多少种取法。

ps:S={n1*a1,n2*a2,n3*a3,……,nn*an}.若m<ni(i=1,2,...n)   则s的m组合=T={m*1,(n-1)*0} =  (m+n-1)!/(m!)/(n!)=c(m+n-1,m);

思路:利用一一对应的思想,再增加一棵树。从n+1棵树上取m个水果的方案数。

ans=T={m*1,n*0}=(m+n)!/m!/n!=c(n+m,m);

Lucas定理是用来求 c(n,m) mod p,p是素数的值。

时间: 2024-10-12 11:44:56

Saving Beans 组合数学之 Lucas定理的相关文章

[HDU 3461] Saving Beans &amp; 组合计数Lucas定理模板

Saving Beans Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem Description Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold

HDU 3037 Saving Beans (数论,Lucas定理)

题意:问用不超过 m 颗种子放到 n 棵树中,有多少种方法. 析:题意可以转化为 x1 + x2 + .. + xn = m,有多少种解,然后运用组合的知识就能得到答案就是 C(n+m, m). 然后就求这个值,直接求肯定不好求,所以我们可以运用Lucas定理,来分解这个组合数,也就是Lucas(n,m,p)=C(n%p,m%p)* Lucas(n/p,m/p,p). 然后再根据费马小定理就能做了. 代码如下: 第一种: #pragma comment(linker, "/STACK:10240

HDU 3037 Saving Beans (隔板法+Lucas定理)

<题目链接> 题目大意:用$n$颗树保存不超过$m$颗豆子($n,m\leq10^9$)(不一定所有的树都有豆子保存),问你总共有多少种情况.答案对p取模(p保证是个素数). 解题分析:可以转化成 将$n$个相同的球放入$m$个集合中,有的集合中的球数可能为0的等价问题.很明显这可以用隔板法解决,答案为$C(n+m-1,m-1)$则题目解的个数可以转换成求: $C(n+m-1,0)+C(n+m-1,1)+C(n+m-1,2)+……+C(n+m-1,m-1)$ 利用组合数公式 $C(n,k) =

HDU 3037 Saving Beans 大组合数 lucas定理

直接lucas降到10w以内搞组合数 #include <cstdio> #include <cstring> typedef __int64 LL; LL f[110010]; LL pow(LL a, LL b, LL c) { LL ans = 1; while(b) { if(b&1) ans = (ans*a) % c; b >>= 1; a = (a*a) % c; } return ans; } LL cm(LL n, LL m, LL p) {

hdu 3037 Saving Beans(组合数学)

hdu 3037 Saving Beans 题目大意:n个数,和不大于m的情况,结果模掉p,p保证为素数. 解题思路:隔板法,C(nn+m)多选的一块保证了n个数的和小于等于m.可是n,m非常大,所以用到Lucas定理. #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long ll; ll n, m, p; ll qPow (ll a

HDU3037Saving Beans(组合数+lucas定理)

Problem Description Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold days. After some time the squirrel family thinks that they have to solve a problem. They supp

HDU 3037 Saving Beans (Lucas定理)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3037 推出公式为C(n + m, m) % p, 用Lucas定理求大组合数取模的值 代码: #include <stdio.h> #include <string.h> #include <algorithm> using namespace std; int t; long long n, m, p; long long pow(long long n, long lo

[ACM] hdu 3037 Saving Beans (Lucas定理,组合数取模)

Saving Beans Problem Description Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold days. After some time the squirrel family thinks that they have to solve a probl

【日常学习】【组合数取模Lucas定理】HDU3037 Saving Beans题解

[提前声明:此题没有通过!WA!有待进一步研究修改.放在这里只是起一个例子的作用,其实这道题鄙人并没有真正掌握= =]. [本文努力抄袭模仿了小花妹妹的博文0戳我0)] 题目大意:共T个测试点,每个测试点中,给定n.m,求将不超过m个种子放入n个坑的方案总数,最后答案对质数p取模.(一共m个,每个坑放多少无所谓,最后没放完m个也无所谓) 数据范围:1 <= n, m <= 1000000000, 1 < p < 100000. 思路:原题意即求方程x1+-+xn=m解的个数,因为中