Robotics System Toolbox(四)

What I do is derived from my pursuit of dreams.

1. Simultaneous Localization and Mapping(http://blog.exbot.net/archives/2515

    It must be achieved three tasks that is Localizationmapping and navigation before reaching  Intelligence.

2. The essential of technology including : Localization, Tracking, Path Planning, Controlling.

3. Kalman Filter       predicting + measurement feedback

4. Learning how to use  Latex editor that can make all  amazing document or paper.

5. ROS:

            (1)Design ideas            Distributed architecture

             (2)core concepts         Nodes  Messages and Topics Services Ros master Parameters Stacks and Packages

            (3)core modules 

      (4) core tools                  V-rep Webots MRPT MORSE Gazebo Opencv PCL 

Movelt! Industrial The Orocos Project rqt rviz

(5)   Common Command   rostopic (Topics)  rosservice (Services)  rosnode (Nodes)  rosparam (Parameters)

rosmsg (Messages)  rossrv (Services)     roswtf (General debugging)

    Introduction:

The Robot Operating System (ROS) is a flexible framework for writing robot software. It is a collection of tools, libraries, and conventions that aim to simplify the task of creating complex and robust robot behavior across a wide variety of robotic platforms. Why? Because creating truly robust, general-purpose robot software is hard. From the robot‘s perspective, problems that seem trivial to humans often vary wildly between instances of tasks and environments. Dealing with these variations is so hard that no single individual, laboratory, or institution can hope to do it on their own.As a result, ROS was built from the ground up to encourage collaborative robotics software development. For example, one laboratory might have experts in mapping indoor environments, and could contribute a world-class system for producing maps. Another group might have experts at using maps to navigate, and yet another group might have discovered a computer vision approach that works well for recognizing small objects in clutter. ROS was designed specifically for groups like these to collaborate and build upon each other‘s work, as is described throughout this site.

?

                          

   

原文地址:https://www.cnblogs.com/sancai16888/p/9649053.html

时间: 2024-10-23 02:27:28

Robotics System Toolbox(四)的相关文章

Robotics System Toolbox笔记(1)

1.ROS基本概念 ROS全称为Robot Operating System,是一种采用分布式架构的元操作系统,它本身并不是通常意义上的操作系统,可以简单的将它理解为是在多个物理计算机中运行的众多ROS节点形成的一个ROS网络. ROS的基本概念 ROS网络 由机器人系统的不同部分组成,网络可以在数个机器上分布. ROS主节点 定位ROS网络中的不同部分,由主节点URI(Uniform Resource Identifier,统一资源定位符)定位,该URI指定主节点运行的机器主机名或IP地址.

System 这四个单元多用用(近期)

参考:https://www.cnblogs.com/xumenger/p/4687493.html System.Classes.pas: TList.TStrings.TStringList System.Contnrs.pas: TObjectList. TComponentList.TClassList.TOrderedList. TStack.TObjectStack. TQueue.TObjectQueue. TCustomBucketList System.Generics.Col

PRM路径规划算法

路径规划作为机器人完成各种任务的基础,一直是研究的热点.研究人员提出了许多规划方法:如人工势场法.单元分解法.随机路标图(PRM)法.快速搜索树(RRT)法等.传统的人工势场.单元分解法需要对空间中的障碍物进行精确建模,当环境中的障碍物较为复杂时,将导致规划算法计算量较大.基于随机采样技术的PRM法可以有效解决高维空间和复杂约束中的路径规划问题. PRM是一种基于图搜索的方法,它将连续空间转换成离散空间,再利用A*等搜索算法在路线图上寻找路径,以提高搜索效率.这种方法能用相对少的随机采样点来找到

Review summary(二)

The high level of English is a standard for a top student. 1. Life is not successful, success is temporary; life is successful, not successful is temporary." 2. The wind blows as usual. Flowers bloom as usual. The sun rises from the east as before. B

Review summary(三)

The high level of English is a standard for a top student. 1. The secret of flowers is to present spring with a fragrant posture, to display her born beauty at the cost of living during each life cycle. 2. Don't confuse my personality with my attitud

[c/c++] programming之路(23)、字符串(四)——strncat,atoi,strcmp,strlen等,以及常用内存函数

一.strncat及自行封装实现 #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<stdlib.h> #include<string.h> //<string.h>是C版本的头文件,包含比如strcpy.strcat之类的字符串处理函数. //<cstring>是C++版本的<string.h> //<string>定义了一个string的字符串类,包含

Deep Learning for Computer Vision with MATLAB and cuDNN(译文)

翻译水平有限,欢迎阅读原文 一.深度学习 当前,深度学习已经成为一个热门话题.随着深度学习算法和GPU技术的发展,我们已经能够解决许多领域(计算机视觉.自然语言处理和机器人学)曾经认为不可能的事情. 深度学习是建立在传统的深度神经网络之上的.最近几年的热点是大数据集和强大的GPUs的使用.神经网络本质上是一种并行算法,因此多核GPUs的使用能够明显的减少用于训练深度神经网络的时间.以下,我将会讨论如何使用MATLAB以及深度卷积神经网络和GPUs开发一个对象识别系统 二.为什么将深度学习用于计算

目标跟踪算法综述

转自  https://www.zhihu.com/question/26493945 作者:YaqiLYU 第一部分:目标跟踪速览 先跟几个SOTA的tracker混个脸熟,大概了解一下目标跟踪这个方向都有些什么.一切要从2013年的那个数据库说起..如果你问别人近几年有什么比较niubility的跟踪算法,大部分人都会扔给你吴毅老师的论文,OTB50和OTB100(OTB50这里指OTB-2013,OTB100这里指OTB-2015,50和100分别代表视频数量,方便记忆): Wu Y, L

matlab分布式平台

一.Matlab R2014b安装教程 1,下载Matlab R2014b ISO格式安装包 2,以winrar格式解压缩ISO文件,出现下图所示的文件列表 3,进入Matlab2014b crack.rar中jar文件,将其中的ValidatedFikImpl.class和InstallerBuilderImpl.class文件复制替换到 上述解压缩文件夹内的路径 \java\jar\install.jar压缩文件的\com\mathworks\install\目录下: 直接向Winrar所打