大数据模块开发之数据采集

1. 需求
在网站web流量日志分析这种场景中,对数据采集部分的可靠性、容错能力要求通常不会非常严苛,因此使用通用的flume日志采集框架完全可以满足需求。
2. Flume日志采集系统2.1. Flume采集
Flume采集系统的搭建相对简单:
1、在服务器上部署agent节点,修改配置文件
2、启动agent节点,将采集到的数据汇聚到指定的HDFS目录中
针对nginx日志生成场景,如果通过flume(1.6)收集,无论是Spooling Directory Source和Exec Source均不能满足动态实时收集的需求,在当前flume1.7稳定版本中,提供了一个非常好用的TaildirSource,使用这个source,可以监控一个目录,并且使用正则表达式匹配该目录中的文件名进行实时收集。
核心配置如下:
a1.sources = r1
a1.sources.r1.type = TAILDIR
a1.sources.r1.channels = c1
a1.sources.r1.positionFile = /var/log/flume/taildir_position.json
a1.sources.r1.filegroups = f1 f2
a1.sources.r1.filegroups.f1 = /var/log/test1/example.log
a1.sources.r1.filegroups.f2 = /var/log/test2/.log.
filegroups:指定filegroups,可以有多个,以空格分隔;(TailSource可以同时监控tail多个目录中的文件)
positionFile:配置检查点文件的路径,检查点文件会以json格式保存已经tail文件的位置,解决了断点不能续传的缺陷。
filegroups.<filegroupName>:配置每个filegroup的文件绝对路径,文件名可以用正则表达式匹配
通过以上配置,就可以监控文件内容的增加和文件的增加。产生和所配置的文件名正则表达式不匹配的文件,则不会被tail。
2.2. 数据内容样例
58.215.204.118 - - [18/Sep/2013:06:51:35 +0000] "GET /wp-includes/js/jquery/jquery.js?ver=1.10.2 HTTP/1.1" 304 0 "http://blog.fens.me/nodejs-socketio-chat/" "Mozilla/5.0 (Windows NT 5.1; rv:23.0) Gecko/20100101 Firefox/23.0"
字段解析:
1、访客ip地址: 58.215.204.118
2、访客用户信息: - -
3、请求时间:[18/Sep/2013:06:51:35 +0000]
4、请求方式:GET
5、请求的url:/wp-includes/js/jquery/jquery.js?ver=1.10.2
6、请求所用协议:HTTP/1.1
7、响应码:304
8、返回的数据流量:0
9、访客的来源url:http://blog.fens.me/nodejs-socketio-chat/
10、访客所用浏览器:Mozilla/5.0 (Windows NT 5.1; rv:23.0) Gecko/20100101 Firefox/23.0

原文地址:http://blog.51cto.com/13587708/2285260

时间: 2024-10-09 03:05:17

大数据模块开发之数据采集的相关文章

大数据模块开发之数据预处理

1. 主要目的过滤"不合规"数据,清洗无意义的数据格式转换和规整根据后续的统计需求,过滤分离出各种不同主题(不同栏目path)的基础数据.2. 实现方式开发一个mr程序WeblogPreProcess(内容太长,见工程代码) public class WeblogPreProcess { static class WeblogPreProcessMapper extends Mapper<LongWritable, Text, Text, NullWritable> { T

大数据模块开发----统计分析

数据仓库建设好以后,用户就可以编写Hive SQL语句对其进行访问并对其中数据进行分析. 在实际生产中,究竟需要哪些统计指标通常由数据需求相关部门人员提出,而且会不断有新的统计需求产生,以下为网站流量分析中的一些典型指标示例. 注:每一种统计指标都可以跟各维度表进行钻取. 1.?流量分析1.1.?多维度统计PV总量按时间维度 -计算每小时pvs,注意gruop by语法 select count(*) as pvs,month,day,hour from ods_weblog_detail gr

大数据模块开发之结果导出

1. Apache SqoopSqoop是Hadoop和关系数据库服务器之间传送数据的一种工具.它是用来从关系数据库如:MySQL,Oracle到Hadoop的HDFS,并从Hadoop的文件系统导出数据到关系数据库.由Apache软件基金会提供.Sqoop:"SQL 到 Hadoop 和 Hadoop 到SQL".Sqoop工作机制是将导入或导出命令翻译成mapreduce程序来实现.在翻译出的mapreduce中主要是对inputformat和outputformat进行定制.sq

大数据模块开发----ETL

ETL工作的实质就是从各个数据源提取数据,对数据进行转换,并最终加载填充数据到数据仓库维度建模后的表中.只有当这些维度/事实表被填充好,ETL工作才算完成. 本项目的数据分析过程在hadoop集群上实现,主要应用hive数据仓库工具,因此,采集并经过预处理后的数据,需要加载到hive数据仓库中,以进行后续的分析过程. 1.?创建ODS层数据表1.1.?原始日志数据表 drop table if exists ods_weblog_origin; create table ods_weblog_o

大数据模块开发----数据仓库设计

1.?维度建模基本概念 维度建模(dimensional modeling)是专门用于分析型数据库.数据仓库.数据集市建模的方法.数据集市可以理解为是一种"小型数据仓库". 维度表(dimension) 维度表示你要对数据进行分析时所用的一个量,比如你要分析产品销售情况, 你可以选择按类别来进行分析,或按区域来分析.这样的按..分析就构成一个维度.再比如"昨天下午我在星巴克花费200元喝了一杯卡布奇诺".那么以消费为主题进行分析,可从这段信息中提取三个维度:时间维度

大数据模块开发----结果导出

1.?Apache Sqoop Sqoop是Hadoop和关系数据库服务器之间传送数据的一种工具.它是用来从关系数据库如:MySQL,Oracle到Hadoop的HDFS,并从Hadoop的文件系统导出数据到关系数据库.由Apache软件基金会提供. Sqoop:"SQL 到 Hadoop 和 Hadoop 到SQL".Sqoop工作机制是将导入或导出命令翻译成mapreduce程序来实现. 在翻译出的mapreduce中主要是对inputformat和outputformat进行定制

【老男孩教育】2018年最新版大数据开发课程表

老男孩教育大数据开发课程适合所有对大数据开发有兴趣的人员,从JavaSE 到大数据生态圈高端课程的开发.课程内容量很大,有一定的难度和深度,认真学习,,技术会有很大程度的提升. 第一阶段:JavaSE+MySql+Linux 学习内容:Java 语言入门 → OOP 编程 → Java 常用Api.集合 → IO/NIO → Java 实 用技术 → Mysql 数据库 → 阶段项目实战 → Linux 基础 → shell 编程 学习目标:学习java语言,掌握java程序编写.面向对象程序开

Spark2.0从入门到精通:Scala编程、大数据开发、上百个实战案例、内核源码深度剖析视频教程

38套大数据,云计算,架构,数据分析师,Hadoop,Spark,Storm,Kafka,人工智能,机器学习,深度学习,项目实战视频教程 视频课程包含: 38套大数据和人工智能精品高级课包含:大数据,云计算,架构,数据挖掘实战,实时推荐系统实战,电视收视率项目实战,实时流统计项目实战,离线电商分析项目实战,Spark大型项目实战用户分析,智能客户系统项目实战,Linux基础,Hadoop,Spark,Storm,Docker,Mapreduce,Kafka,Flume,OpenStack,Hiv

大数据开发入门你必须知道的事情

昨天和三个学计算机专业的学生聊天时聊到了大数据开发方面的话题,他们三个人中,有两个已经进入企业开始工作,另外一个还是大二学生,但已经开设了自己的工作室.他们都是从事程序开发方面工作的.大数据开发自然都有关注到,只是目前的大数据技能水平只能说是"小菜鸟"吧,连入门还谈不上.当然了,大数据开发方面我也只能算是个"小学生",也是跟在师傅后面学.自然hadoop.区块链火了以后,发现很多从事程序开发的"码农"朋友们也陆续投入到大数据开发的怀抱.对于有多年