Python-装饰器进阶

基本概念

具体概念请先看之前的文章 理解装饰器

装饰器是一个很著名的设计模式,经常被用于有切面需求的场景,较为经典的有插入日志、性能测试、事务处理, Web权限校验, Cache等。

很有名的例子,就是咖啡,加糖的咖啡,加牛奶的咖啡。本质上,还是咖啡,只是在原有的东西上,做了“装饰”,使之附加一些功能或特性。

例如记录日志,需要对某些函数进行记录

笨的办法,每个函数加入代码,如果代码变了,就悲催了

装饰器的办法,定义一个专门日志记录的装饰器,对需要的函数进行装饰,搞定

优点

抽离出大量函数中与函数功能本身无关的雷同代码并继续重用

即,可以将函数“修饰”为完全不同的行为,可以有效的将业务逻辑正交分解,如用于将权限和身份验证从业务中独立出来

概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能

Python中的装饰器

在Python中,装饰器实现是十分方便的

原因是:函数可以被扔来扔去。

函数作为一个对象:

A.可以被赋值给其他变量,可以作为返回值

B.可以被定义在另外一个函数内

def:

装饰器是一个函数,一个用来包装函数的函数,装饰器在函数申明完成的时候被调用,调用之后返回一个修改之后的函数对象,将其重新赋值原来的标识符,并永久丧失对原始函数对象的访问(申明的函数被换成一个被装饰器装饰过后的函数)

当我们对某个方法应用了装饰方法后, 其实就改变了被装饰函数名称所引用的函数代码块入口点,使其重新指向了由装饰方法所返回的函数入口点。

由此我们可以用decorator改变某个原有函数的功能,添加各种操作,或者完全改变原有实现

分类:

装饰器分为无参数decorator,有参数decorator

* 无参数decorator

生成一个新的装饰器函数

* 有参decorator

有参装饰,装饰函数先处理参数,再生成一个新的装饰器函数,然后对函数进行装饰

装饰器有参/无参,函数有参/无参,组合共4种

具体定义:

decorator方法

A.把要装饰的方法作为输入参数,

B.在函数体内可以进行任意的操作(可以想象其中蕴含的威力强大,会有很多应用场景),

C.只要确保最后返回一个可执行的函数即可(可以是原来的输入参数函数, 或者是一个新函数)

无参数装饰器 – 包装无参数函数

不需要针对参数进行处理和优化

def decorator(func):
    print "hello"
    return func

@decorator
def foo():
    pass

foo()

foo()等价于:

foo = decorator(foo)
foo()

无参数装饰器 – 包装带参数函数

def decorator_func_args(func):
    def handle_args(*args, **kwargs): #处理传入函数的参数
        print "begin"
        func(*args, **kwargs)   #函数调用
        print "end"
    return handle_args

@decorator_func_args
def foo2(a, b=2):
    print a, b

foo2(1)

foo2(1)等价于

foo2 = decorator_func_args(foo2)
foo2(1)

带参数装饰器 – 包装无参数函数

def decorator_with_params(arg_of_decorator):#这里是装饰器的参数
    print arg_of_decorator
    #最终被返回的函数
    def newDecorator(func):
        print func
        return func
    return newDecorator

@decorator_with_params("deco_args")
def foo3():
    pass
foo3()

与前面的不同在于:比上一层多了一层封装,先传递参数,再传递函数名

第一个函数decomaker是装饰函数,它的参数是用来加强“加强装饰”的。由于此函数并非被装饰的函数对象,所以在内部必须至少创建一个接受被 装饰函数的函数,然后返回这个对象(实际上此时foo3= decorator_with_params(arg_of_decorator)(foo3))

带参数装饰器– 包装带参数函数

def decorator_whith_params_and_func_args(arg_of_decorator):
    def handle_func(func):
        def handle_args(*args, **kwargs):
            print "begin"
            func(*args, **kwargs)
            print "end"
            print arg_of_decorator, func, args,kwargs
        return handle_args
    return handle_func

@decorator_whith_params_and_func_args("123")
def foo4(a, b=2):
    print "Content"

foo4(1, b=3)

内置装饰器

内置的装饰器有三个:staticmethod,classmethod, property

class A():
    @staticmethod
    def test_static():
        print "static"
    def test_normal(self):
        print "normal"
    @classmethod
    def test_class(cls):
        print "class", cls

a = A()
A.test_static()
a.test_static()
a.test_normal()
a.test_class()

结果:

static
static
normal
class __main__.A

A.test_static

staticmethod 类中定义的实例方法变成静态方法

基本上和一个全局函数差不多(不需要传入self,只有一般的参数),只不过可以通过类或类的实例对象来调用,不会隐式地传入任何参数。

类似于静态语言中的静态方法

B.test_normal

普通对象方法:普通对象方法至少需要一个self参数,代表类对象实例

C.test_class

类中定义的实例方法变成类方法

classmethod需要传入类对象,可以通过实例和类对象进行调用。

是和一个class相关的方法,可以通过类或类实例调用,并将该class对象(不是class的实例对象)隐式地当作第一个参数传入。

就这种方法可能会 比较奇怪一点,不过只要你搞清楚了python里class也是个真实地存在于内存中的对象,而不是静态语言中只存在于编译期间的类型,就好办了。正常的 方法就是和一个类的实例对象相关的方法,通过类实例对象进行调用,并将该实例对象隐式地作为第一个参数传入,这个也和其它语言比较像。

D.区别

staticmethod,classmethod相当于全局方法,一般用在抽象类或父类中。一般与具体的类无关。

类方法需要额外的类变量cls,当有子类继承时,调用类方法传入的类变量cls是子类,而不是父类。

类方法和静态方法都可以通过类对象和类的实例对象访问

定义方式,传入的参数,调用方式都不相同。

E.property

对类属性的操作,类似于java中定义getter/setter

class B():
    def __init__(self):
        self.__prop = 1
    @property
    def prop(self):
        print "call get"
        return self.__prop
    @prop.setter
    def prop(self, value):
        print "call set"
        self.__prop = value
    @prop.deleter
    def prop(self):
        print "call del"
        del self.__prop

其他

A.装饰器的顺序很重要,需要注意

@A
@B
@C
def f ():  ...

等价于

f = A(B(C(f)))

B.decorator的作用对象可以是模块级的方法或者类方法

C.functools模块提供了两个装饰器。这个模块是Python 2.5后新增的。

functools.wraps(func)total_ordering(cls)这个具体自己去看吧,后续用到了再补充

一个简单例子

通过一个变量,控制调用函数时是否统计时间

#!/usr/bin/env python
# -*- coding:utf-8 -*-
#@author: [email protected]
#@version: a test of decorator
#@date: 20121027
#@desc: just a test

import logging

from time import time

logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
is_debug = True

def count_time(is_debug):
    def  handle_func(func):
        def  handle_args(*args, **kwargs):
            if is_debug:
                begin = time()
                func(*args, **kwargs)
                logging.debug( "[" + func.__name__ + "] -> " + str(time() - begin) )
            else:
                func(*args, **kwargs)
        return handle_args
    return handle_func

def pr():
    for i in range(1,1000000):
        i = i * 2
    print "hello world"

def test():
    pr()

@count_time(is_debug)
def test2():
    pr()

@count_time(False)
def test3():
    pr()

if __name__ == "__main__":
    test()
    test2()
    test3()

结果:

hello world
hello world
DEBUG:root:[test2] -> 0.0748538970947
hello world

转自:http://blog.csdn.net/wklken/article/details/8118942

时间: 2024-12-17 19:47:41

Python-装饰器进阶的相关文章

Python装饰器进阶

编程的一个原则:开放封闭原则,对源代码的修改封闭,在源代码不变的情况下,对扩展新功能开放 import timedef foo(): print('foo....') time.sleep(2)def show_time(func): start = time.time () func() end = time.time () print ('spend %s'%(end-start))show_time(foo) 上述代码有个问题.show_time()函数是个基层函数,需要所有上层函数调用它

python函数四(装饰器进阶)

一.开放封闭原则 1.对扩展是开放的 任何一个程序,不可能在设计之初就已经想好了所有的功能并且未来不做任何更新和修改.所以我们必须允许代码扩展.添加新功能. 2.对修改是封闭的 比如我们写的一个函数,很有可能已经交付给其他人使用了,如果这个时候我们对其进行了修改,很有可能影响其他已经在使用该函数的用户. 装饰器完美的遵循了开放封闭原则. 二.函数的有用信息 def func(): ''' 本函数主要用于绘图,实时接收数据 :return:返回给前端某标签 ''' print(func.__doc

Python函数--装饰器进阶

开放封闭原则 1.对扩展是开放的 为什么要对扩展开放呢? 我们说,任何一个程序,不可能在设计之初就已经想好了所有的功能并且未来不做任何更新和修改.所以我们必须允许代码扩展.添加新功能. 2.对修改是封闭的 为什么要对修改封闭呢? 就像我们刚刚提到的,因为我们写的一个函数,很有可能已经交付给其他人使用了,如果这个时候我们对其进行了修改,很有可能影响其他已经在使用该函数的用户. 装饰器完美的遵循了这个开放封闭原则. *args,**kwargs def f1(*args,**kwargs):   接

由浅入深,走进Python装饰器-----第二篇:进阶--函数装饰函数

上一篇:由浅入深,走进Python装饰器-----第一篇:基础 装饰器的使用种类: # 第一种 @函数 被装饰函数 # 第二种 @函数 被装饰类 # 第三种 @类 被装饰类 # 第四种 @函数 被装饰函数 本篇介绍第一种 @函数 被装饰函数 1.1 对带参数的原函数进行修饰 # 默认将old函数的参数传给outer里面的第一层函数 def outer(f): def inner(var): print("1 我是outer函数,接收外部传进来的old :",f) print("

5.初识python装饰器 高阶函数+闭包+函数嵌套=装饰器

一.什么是装饰器? 实际上装饰器就是个函数,这个函数可以为其他函数提供附加的功能. 装饰器在给其他函数添加功能时,不会修改原函数的源代码,不会修改原函数的调用方式. 高阶函数+函数嵌套+闭包 = 装饰器 1.1什么是高阶函数? 1.1.1函数接收的参数,包涵一个函数名. 1.1.2 函数的返回值是一个函数名. 其实这两个条件都很好满足,下面就是一个高阶函数的例子. def test1(): print "hamasaki ayumi" def test2(func): return t

python装饰器通俗易懂的解释!

python装饰器 刚刚接触python的装饰器,简直懵逼了,直接不懂什么意思啊有木有,自己都忘了走了多少遍Debug,查了多少遍资料,猜有点点开始明白了.总结了一下解释得比较好的,通俗易懂的来说明一下: 小P闲来无事,随便翻看自己以前写的一些函数,忽然对一个最最最基础的函数起了兴趣: 1 def sum1(): 2 sum = 1 + 2 3 print(sum) 4 sum1() 此时小P想看看这个函数执行用了多长时间,所以写了几句代码插进去了: 1 import time 2 3 def

python装饰器1

第八步:让装饰器带 类 参数 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 # -*- coding:gbk -*- '''示例8: 装饰器带类参数''' class locker:     def __init__(self):         print("locker.__init__() should be not called.")   

Python装饰器由浅入深

装饰器的功能在很多语言中都有,名字也不尽相同,其实它体现的是一种设计模式,强调的是开放封闭原则,更多的用于后期功能升级而不是编写新的代码.装饰器不光能装饰函数,也能装饰其他的对象,比如类,但通常,我们以装饰函数为例子介绍其用法.要理解在Python中装饰器的原理,需要一步一步来.本文尽量描述得浅显易懂,从最基础的内容讲起. (注:以下使用Python3.5.1环境) 一.Python的函数相关基础 第一,必须强调的是python是从上往下顺序执行的,而且碰到函数的定义代码块是不会立即执行它的,只

python 装饰器学习(decorator)

最近看到有个装饰器的例子,没看懂, #!/usr/bin/python class decorator(object): def __init__(self,f): print "initial decorator" f() def __call__(self): print "call decorator" @decorator def fun(): print "in the fun" print "after " fun

【转】九步学习python装饰器

本篇日志来自:http://www.cnblogs.com/rhcad/archive/2011/12/21/2295507.html 纯转,只字未改.只是为了学习一下装饰器.其实现在也是没有太看明白,对于装饰器我就是用的时候找例子,能蒙对,但是用过之后一段时间就忘了.还是用的少.有空应该好好看一看的,包括闭包.对于各种现代编程语言来说闭包都是很重要的.在这里先谢过原作者,如有侵权请告知. =-=-=-=-=-=-=-=-=-=-一条不怎么华丽的分隔线-=-=-=-=-=-=-=-=-=-= 这