【分块答案】【最小割】bzoj1532 [POI2005]Kos-Dicing

引用zky的题解:http://blog.csdn.net/iamzky/article/details/39667859

每条S-T路径代表一次比赛的结果。最小割会尽量让一个人赢得最多。

因为二分总是写挂,所以写了分块答案,比暴力枚举好像快不了多少。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
#define INF 2147483647
#define MAXN 20011
#define MAXM 100301
int v[MAXM],cap[MAXM],en,first[MAXN],next[MAXM];
int d[MAXN],cur[MAXN];
queue<int>q;
int n,m,S,T;
void Init_Dinic(){memset(first,-1,sizeof(first)); en=0; S=0; T=n+m+1;}
void AddEdge(const int &U,const int &V,const int &W)
{v[en]=V; cap[en]=W; next[en]=first[U]; first[U]=en++;
v[en]=U; next[en]=first[V]; first[V]=en++;}
bool bfs()
{
    memset(d,-1,sizeof(d)); q.push(S); d[S]=0;
    while(!q.empty())
      {
        int U=q.front(); q.pop();
        for(int i=first[U];i!=-1;i=next[i])
          if(d[v[i]]==-1 && cap[i])
            {
              d[v[i]]=d[U]+1;
              q.push(v[i]);
            }
      }
    return d[T]!=-1;
}
int dfs(int U,int a)
{
    if(U==T || !a) return a;
    int Flow=0,f;
    for(int &i=cur[U];i!=-1;i=next[i])
      if(d[U]+1==d[v[i]] && (f=dfs(v[i],min(a,cap[i]))))
        {
          cap[i]-=f; cap[i^1]+=f;
          Flow+=f; a-=f; if(!a) break;
        }
    if(!Flow) d[U]=-1;
    return Flow;
}
int max_flow()
{
    int tmp=0,Flow=0;
    while(bfs())
      {
        memcpy(cur,first,(n+m+5)*sizeof(int));
        while(tmp=dfs(S,INF)) Flow+=tmp;
      }
    return Flow;
}
int us[10001],vs[10001];
void Rebuild(const int &x)
{
    Init_Dinic();
    for(int i=1;i<=m;++i)
      {
        AddEdge(S,i,1);
        AddEdge(i,us[i]+m,1);
        AddEdge(i,vs[i]+m,1);
      }
    for(int i=1;i<=n;++i) AddEdge(i+m,T,x);
}
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;++i) scanf("%d%d",&us[i],&vs[i]);
    int sz=sqrt(m); int last=0;
    for(int i=1;last<=m;i+=sz)
      {
        Rebuild(i);
        if(max_flow()>=m)
          {
            for(int j=last+1;j<=i;++j)
              {
                Rebuild(j);
                if(max_flow()>=m)
                  {
                    printf("%d\n",j);
                    return 0;
                  }
              }
          }
        last=i;
      }
    return 0;
}

  

时间: 2024-10-17 06:25:21

【分块答案】【最小割】bzoj1532 [POI2005]Kos-Dicing的相关文章

Educational Codeforces Round 21 Problem F (Codeforces 808F) - 最小割 - 二分答案

Digital collectible card games have become very popular recently. So Vova decided to try one of these. Vova has n cards in his collection. Each of these cards is characterised by its power pi, magic number ci and level li. Vova wants to build a deck

There is a war (hdu 2435 最小割+枚举)

There is a war Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 970    Accepted Submission(s): 277 Problem Description There is a sea. There are N islands in the sea. There are some directional

POJ2914 Minimum Cut【全局最小割】【Stoer-Wangner】

题目链接: http://poj.org/problem?id=2914 题目大意: 提一个无向有重边的图,有重边的边权累加起来,求全局最小割. 思路: 一个无向连通图,去掉一个边集可以使其变成两个连通分量则这个边集就是割集.最小割 集当然就是权和最小的割集. 这是一个最简单的全局最小割模板题.直接套上模板就可以了.来说说Stoer-Wangner算 法吧. Stoer-Wangner算法: 对于图中的任意两个顶点u和v,若u,v属于最小割的同一个集合中,那么僵顶点u和顶点 v合并后并不影响图的

【BZOJ3232】圈地游戏 分数规划+最小割

[BZOJ3232]圈地游戏 Description DZY家的后院有一块地,由N行M列的方格组成,格子内种的菜有一定的价值,并且每一条单位长度的格线有一定的费用. DZY喜欢在地里散步.他总是从任意一个格点出发,沿着格线行走直到回到出发点,且在行走途中不允许与已走过的路线有任何相交或触碰(出发点除外).记这条封闭路线内部的格子总价值为V,路线上的费用总和为C,DZY想知道V/C的最大值是多少. Input 第一行为两个正整数n,m. 接下来n行,每行m个非负整数,表示对应格子的价值. 接下来n

BZOJ3438 小M的作物(最小割)

题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=3438 Description 小M在MC里开辟了两块巨大的耕地A和B(你可以认为容量是无穷),现在,小P有n中作物的种子,每种作物的种子有1个(就是可以种一棵作物)(用1...n编号),现在,第i种作物种植在A中种植可以获得ai的收益,在B中种植可以获得bi的收益,而且,现在还有这么一种神奇的现象,就是某些作物共同种在一块耕地中可以获得额外的收益,小M找到了规则中共有m种作物组

poj 3308 Paratroopers 最小割 最小点权覆盖

题目链接:http://poj.org/problem?id=3308 题意: 有一个M*N的图,上面的一些点上有伞兵. 可以设置一些枪在每行或者每列上,通过射击,这行或这列的伞兵就会被消灭.每个枪的设置有一个花费,如果设置多个枪,那么花费是设置每个枪的乘积. 问消灭所有伞兵最少的花费是多少. 思路: 每个点的伞兵至少要用那一列或者那一行设置的枪去消灭,那么就可以应用点覆盖的模型.把伞兵看成是一条边,这条边至少要用一个点来覆盖. 而题目中最终花费是所有花费的乘积,那么可以用对数log(x)+lo

UVA-1660 Cable TV Network (最小割)

题目大意:给一张n个点.m条边的无向图,求最小点割集的基数. 题目分析:求无向图最小点割集的基数可以变成求最小割.考虑单源s单汇t的无向图,如果要求一个最小点集,使得去掉这个点集后图不再连通(连通分量数目增多),只需将每个点拆成两个(入点和出点),并且之间连一条容量为1的弧,其他弧不变,在新网络上求最小割便得到这个最小点集的基数.但是本题无源无汇,可以指定一个点作为源点,枚举其它的点作为汇点,求得n-1个点集基数,取最小的便是答案.要注意每次枚举都要重新建图. 代码如下: # include<i

求无向图最小割

先解释下名词的意思. 无向图的割:就是去掉一些边,使得原图不连通,最小割就是要去掉边的数量最小. 解决这个问题的常用办法就是Stoer-Wagner 算法: 先说下这个算法的步骤后面给出证明: 1.min=MAXINT,固定一个顶点P 2.从点P用类似prim的s算法扩展出"最大生成树",记录最后扩展的顶点和最后扩展的边 3.计算最后扩展到的顶点的切割值(即与此顶点相连的所有边权和),若比min小更新min 4.合并最后扩展的那条边的两个端点为一个顶点 5.转到2,合并N-1次后结束

BZOJ 2007 海拔(平面图最小割-最短路)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2007 题意:给出一个n*n的格子,那么顶点显然有(n+1)*(n+1)个.每两个相邻顶点之间有两条边,这两条边是有向的,边上有权值..左上角为源点,右下角为汇点,求s到t的最小割. 思路:很明显这是一个平面图,将其转化为最 短路.我们将s到t之间连一条边,左下角为新图的源点S,右上角区域为新图的终点T,并且为每个格子编号.由于边是有向的,我们就要分析下这条边应该是哪 个点向哪个点的边.