【经典算法】贪心算法

  贪心算法分阶段工作。在每一个阶段,可以认为所做的决定是好的,而不考虑将来的后果。一般来说,这意味着选择的是某个局部最优。这种“眼下能够拿到的就拿”的策略是这类算法名称的来源。当算法终止时,我们希望局部最优就是全局最优。如果真是这样的话,那么算法就是正确的;否则,算法得到的是一个次最优解。如果不要求绝对的最佳答案,那么有时用简单的贪心算法生成近似答案,而不是使用一般来说产生准确答案所需要的复杂算法。

  可以根据如下步骤来设计贪心算法:

  1. 将优化问题转化成这样的一个问题,即像做出选择,再解决剩下的一个子问题。

  2. 证明原问题总是有一个最优解是做贪心选择得到的,从而说明贪心选择的安全。

  3. 说明在做出贪心选择后,剩余的子问题具有这样的一个性质。即如果将子问题的最优解和我们所作的贪心选择联合起来,可以得到原问题的一个最优解。

  贪心选择性质和最优子结构性质是贪心算法关键的特点。

  贪心选择性质:一个全局最优解可以通过局部最优(贪心)选择来达到。这一点是贪心算法不同于动态规划之处。在动态规划中,每一步都要做出选择,但是这些选择依赖于子问题的解。因此,解动态规划问题一般是自底向上,从小到大。在贪心算法中,我们所做的总是当前看似最佳的选择,然后再解决选择之后说出现的子问题。贪心算法所做的当前选择可能要依赖于已经做出的所有选择,当不依赖于做出的选择或子问题的解。因此,不像动态规划方法哪样自底向上地解决问题,贪心策略通常是自顶向下,一个一个做出贪心选择,不断地将给定问题实例规约为更小的问题。

  贪心算法是一种很有效的方法,适用于一大类问题。最小生成树,地接斯特拉、单元最短路径算法,哈夫曼树的构造都是贪心算法的应用。

时间: 2024-11-03 05:43:13

【经典算法】贪心算法的相关文章

五大算法—贪心算法

贪心算法 一.基本概念: 所谓贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解. 贪心算法没有固定的算法框架,算法设计的关键是贪心策略的选择.必须注意的是,贪心算法不是对所有问题都能得到整体最优解,选择的贪心策略必须具备无后效性,即某个状态以后的过程不会影响以前的状态,只与当前状态有关. 所以对所采用的贪心策略一定要仔细分析其是否满足无后效性. 二.贪心算法的基本思路: 1.建立数学模型来描述问题. 2.把求解

算法-贪心算法

贪心算法大学的时候就已经学过也弄过,可能周末确实没想到写什么,就顺手学了当年学习的知识,贪心算法(也称为贪婪算法),贪心算法总是作出在当前看来最好的选择.贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择.当然,希望贪心算法得到的最终结果也是整体最优的.虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解. 贪心要素 概念就是这样,如果需要详情可继续搜索获取更多信息,这个时候出现了一个问题,什么使用贪心算法?只需要满足两点即可,首先就是所求解的问题最优

高级算法——贪心算法(找零问题)

function makeChange(origAmt, coins) {//贪心算法——找零问题 var remainAmt ; if (origAmt % .25 < origAmt) { coins[3] = parseInt(origAmt / .25); remainAmt = origAmt % .25; origAmt = remainAmt; } if (origAmt % .1 < origAmt) { coins[2] = parseInt(origAmt / .1); r

高级算法——贪心算法(背包问题)

贪心算法不能用来解决离散物品问题的原因是我们无法将“ 半台电视” 放入背包. 规则是按照物品价值高低顺序放入背包. function ksack(values, weights, capacity) { var load = 0; var i = 0; var v = 0; while (load < capacity && i < weights.length) { if (weights[i] <= (capacity - load)) { v += values[i

[C++]单源最短路径:迪杰斯特拉(Dijkstra)算法(贪心算法)

1 Dijkstra算法 1.1 算法基本信息 解决问题/提出背景 单源最短路径(在带权有向图中,求从某顶点到其余各顶点的最短路径) 算法思想 贪心算法 按路径长度递增的次序,依次产生最短路径的算法 [适用范围]Dijkstra算法仅适用于[权重为正]的图模型中 时间复杂度 O(n^3) 补充说明 亦可应用于[多源最短路径](推荐:Floyd算法(动态规划,O(n^3))) Dijkstra 时间复杂度:O(n^3) 1.2 算法描述 1.2.1 求解过程(具体思路) 1.2.2 示例 1.2

[C++] 多源最短路径(带权有向图):【Floyd算法(动态规划法)】 VS nX Dijkstra算法(贪心算法)

1 Floyd算法 1.1 Code /** * 弗洛伊德(Floyd)算法: 1 解决问题: 多源最短路径问题 求每一对顶点之间的最短路径 Background: 带权有向图 2 算法思想: 动态规划(DP, Dynamic Programming) 3 时间复杂度: O(n^3) */ #include<stdio.h> #include<iostream> using namespace std; // 1 定义图模型(邻接矩阵表示法)的基本存储结构体 # define Ma

数据结构与算法-贪心算法

#include "pch.h" #include <iostream> #include <stdio.h> int main() { const int RMB[] = { 200, 100, 20, 5, 1 }; const int NUM = 5; int X = 628; int count = 0; for (int i = 0; i < NUM; i++) { int use = X / RMB[i]; count += use; X =

五大常用算法之三贪心算法

贪心算法 贪心算法简介: 贪心算法是指:在每一步求解的步骤中,它要求"贪婪"的选择最佳操作,并希望通过一系列的最优选择,能够产生一个问题的(全局的)最优解. 贪心算法每一步必须满足一下条件: 1.可行的:即它必须满足问题的约束. 2.局部最优:他是当前步骤中所有可行选择中最佳的局部选择. 3.不可取消:即选择一旦做出,在算法的后面步骤就不可改变了. 贪心算法案例: 1.活动选择问题  这是<算法导论>上的例子,也是一个非常经典的问题.有n个需要在同一天使用同一个教室的活动a

零基础学贪心算法

本文在写作过程中参考了大量资料,不能一一列举,还请见谅.贪心算法的定义:贪心算法是指在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,只做出在某种意义上的局部最优解.贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关.解题的一般步骤是:1.建立数学模型来描述问题:2.把求解的问题分成若干个子问题:3.对每一子问题求解,得到子问题的局部最优解:4.把子问题的局部最优

五大算法思想—贪心算法

贪心法理解 贪心法在解决问题的策略上目光短浅,只根据当前已有的信息就做出选择,而且一旦做出了选择,不管将来有什么结果,这个选择都不会改变.换言之,贪心法并不是从整体最优考虑,它所做出的选择只是在某种意义上的局部最优. 一句话:不求最优,只求可行解. 判断贪心法 对于一个具体的问题,怎么知道是否可用贪心算法解此问题,以及能否得到问题的最优解? 我们可以根据贪心法的2个重要的性质去证明:贪心选择性质和最优子结构性质. 1.贪心选择性质 什么叫贪心选择?从字义上就是贪心也就是目光短线,贪图眼前利益,在