《算法导论》Problem 2-4 Inversions

在Merge Sort的基础上改改就好了。

 1 public class Inversions {
 2
 3     public static int inversions(int [] A,int p, int r)
 4     {
 5
 6         if(p<r)
 7         {
 8             int q = (int) Math.floor( (p+r)/2 );
 9             int left = inversions(A,p,q);
10             int right = inversions(A,q+1,r);
11             int c = combine(A,p,q,r);
12             return left + right + c;
13         }
14         return 0;
15
16     }
17     public static int combine(int [] A, int p, int q, int r)
18     {
19         int total_inversions = 0;
20
21         int n1 = q-p+1;
22         int n2 = r-q;
23         int [] L = new int[n1];
24         int [] R = new int[n2];
25         for(int i=0; i<n1; i++)
26           L[i] = A[p+i];
27         for(int i=0; i<n2;i++)
28             R[i]=A[q+i+1];
29
30         int i=0;
31         int j=0;
32         int counter = p;
33         while(i<L.length && j<R.length)
34         {
35             if(L[i]<=R[j])
36             {
37                 A[counter]=L[i];
38                 i++;
39             }
40             else
41             {
42                 A[counter]=R[j];
43                 j++;
44                 total_inversions += (q-(p+i)+1);
45             }
46             counter++;
47         }
48         if(i==L.length)
49         {
50             for(int k=j;k<R.length;k++)
51                 A[counter++] = R[k];
52         }
53         else
54         {
55             for(int k=i;k<L.length;k++)
56                 A[counter++] = L[k];
57         }
58         return total_inversions;
59     }
60     public static void main(String[] args) {
61         int A[] = {2,3,8,6,1,7,9,1};
62         int num_of_inversions = inversions(A,0,A.length-1);
63         System.out.println(num_of_inversions);
64     }
65 }
时间: 2024-12-29 11:46:35

《算法导论》Problem 2-4 Inversions的相关文章

《算法导论》中动态规划求解钢条切割问题

动态规划算法概述 动态规划(dynamic programming)1是一种与分治方法很像的方法,都是通过组合子问题的解来求解原问题.不同之处在于,动态规划用于子问题重叠的情况,比如我们学过的斐波那契数列.在斐波那契数列的求解问题中,我们经常要对一个公共子问题进行多次求解,而动态规划算法,则对每个子问题只求解一次,将其解保存在一个表格中,从而避免了大量的冗余计算量. 动态规划算法常用于寻找最优解问题(optimization problem).而其规划大概可分为四步: 1.刻画一个最优解的结构特

算法导论读书笔记(18)

算法导论读书笔记(18) 目录 最长公共子序列 步骤1:描述最长公共子序列的特征 步骤2:一个递归解 步骤3:计算LCS的长度 步骤4:构造LCS LCS问题的简单Java实现 最长公共子序列 某给定序列的子序列,就是将给定序列中零个或多个元素去掉后得到的结果.其形式化定义如下:给定一个序列 X = < x1 , x2 , - , xm >,另一个序列 Z = < z1 , z2 , - , zk >,如果 Z 满足如下条件则称 Z 为 X 的 子序列 (subsequence),

《算法导论》(CLRS)第三版 第1、2章总结(二)

5. 归并排序 (Merge Sort) 1 #include <stdio.h> 2 #include <stdlib.h> 3 4 void print(int arr[], int n) { 5 int i; 6 for (i = 0; i < n; i++) { 7 printf("%d ", arr[i]); 8 } 9 printf("\n"); 10 } 11 12 void merge(int arr[], int s,

基本数据结构(算法导论)与python

原文链接 Stack, Queue Stack是后进先出, LIFO, 队列为先进先出, FIFO在Python中两者, 都可以简单的用list实现,进, 用append()出, Stack用pop(), Queue用pop(0), pop的时候注意判断len(l) 对于优先队列, 要用到前面讲到的堆 链表和多重数组 这些数据结构在python中就没有存在的价值, 用list都能轻松实现 散列表 为了满足实时查询的需求而产生的数据结构, 查询复杂度的期望是O(1), 最差为O(n)问题描述, 对

[Algorithm] 如何正确撸&lt;算法导论&gt;CLRS

其实算法本身不难,第一遍可以只看伪代码和算法思路.如果想进一步理解的话,第三章那些标记法是非常重要的,就算要花费大量时间才能理解,也不要马马虎虎略过.因为以后的每一章,讲完算法就是这样的分析,精通的话,很快就读完了.你所说的证明和推导大概也都是在第三章介绍了,可以回过头再认真看几遍. 至于课后题,比较难,我只做了前几章,如果要做完需要更多时间和精力.这可以通过之后做算法题来弥补,可以去leetcode等网站找一些经典的算法题做一做,加深理解. Facebook的工程师写的攻略,介绍了用算法导论来

算法导论学习之插入排序+合并排序

最近准备花时间把算法导论详细的看一遍,强化一下算法和数据结构的基础,将一些总结性的东西写到博客上去. 一.插入排序 算法思想:如果一个数组A,从A[1–n-1]都是有序的,然后我们将A[n]插入到A[1–n-1]的某个合适的位置上去那么就可以保证A[1–n]都是有序的.这就是插入排序的思想:具体实现的时候我们将数组的第一个元素看出有序,然后从第二个元素开始按照上面的步骤进行插入操作,直到插入最后一个元素,然后整个数组都是有序的了. 时间复杂度分析:代码中有两重for循环,很容易看出时间复杂度是n

算法导论——lec 13 贪心算法与图上算法

之前我们介绍了用动态规划的方法来解决一些最优化的问题.但对于有些最优化问题来说,用动态规划就是"高射炮打蚊子",采用一些更加简单有效的方法就可以解决.贪心算法就是其中之一.贪心算法是使所做的选择看起来是当前最佳的,期望通过所做的局部最优选择来产生一个全局最优解. 一. 活动选择问题 [问题]对几个互相竞争的活动进行调度:活动集合S = {a1, a2, ..., an},它们都要求以独占的方式使用某一公共资源(如教室),每个活动ai有一个开始时间si和结束时间fi ,且0 ≤ si &

算法导论--图的遍历(DFS与BFS)

转载请注明出处:勿在浮沙筑高台http://blog.csdn.net/luoshixian099/article/details/51897538 图的遍历就是从图中的某个顶点出发,按某种方法对图中的所有顶点访问且仅访问一次.为了保证图中的顶点在遍历过程中仅访问一次,要为每一个顶点设置一个访问标志.通常有两种方法:深度优先搜索(DFS)和广度优先搜索(BFS).这两种算法对有向图与无向图均适用. 以下面无向图为例: 1.深度优先搜索(DFS) 基本步骤: 1.从图中某个顶点v0出发,首先访问v

算法导论8:数据结构——栈 2016.1.8

栈在暑假的时候接触过了,当时还写了个计算器,用的中缀表达式后缀表达式的栈操作. http://www.cnblogs.com/itlqs/p/4749998.html 今天按照算法导论上的讲解规范了一下代码.主要是栈的初始化.判断空栈.入栈.出栈.遍历栈. #include<stdio.h> #define MAXTOP 10 struct _stack { int top; int num[MAXTOP+1]; }s; void init(struct _stack &S) { S.

红黑树&mdash;&mdash;算法导论(15)

1. 什么是红黑树 (1) 简介     上一篇我们介绍了基本动态集合操作时间复杂度均为O(h)的二叉搜索树.但遗憾的是,只有当二叉搜索树高度较低时,这些集合操作才会较快:即当树的高度较高(甚至一种极端情况是树变成了1条链)时,这些集合操作并不比在链表上执行的快.     于是我们需要构建出一种"平衡"的二叉搜索树.     红黑树(red-black tree)正是其中的一种.它可以保证在最坏的情况下,基本集合操作的时间复杂度是O(lgn). (2) 性质     与普通二叉搜索树不