概览
flume-ng中最重要的核心三大组件就是source,channel,sink
source负责从源端收集数据,产出event
channel负责暂存event,以备下游取走消费
sink负责消费通道中的event,写到最终的输出端上
以上是总体的一个简单结构图,下面我们来深入每一个组件的内部看看:
1、Source
source接口的定义如下:
@InterfaceAudience.Public @InterfaceStability.Stable public interface Source extends LifecycleAware, NamedComponent { /** * Specifies which channel processor will handle this source‘s events. * * @param channelProcessor */ public void setChannelProcessor(ChannelProcessor channelProcessor); /** * Returns the channel processor that will handle this source‘s events. */ public ChannelProcessor getChannelProcessor(); } |
source生成event并且调用配置的channelprocessor的相关方法,持续的将events存入配置的channel里
channelProcessor中有通道选择器和拦截器链,该过程处在source端收到数据和放入通道直接
该source继承了两个类
1、NamedComponent
负责给每一个组件取一个唯一标识,就是名字,这个名字来源于我们的配置
2、LifecycleAware
负责组件的启停和状态维护
Source接口的直接实现类是AbstractSource抽象类
该类中就定义了通道处理器
还有一个生命状态周期的枚举类型
public enum LifecycleState { IDLE, START, STOP, ERROR; public static final LifecycleState[] START_OR_ERROR = new LifecycleState[] { START, ERROR }; public static final LifecycleState[] STOP_OR_ERROR = new LifecycleState[] { STOP, ERROR }; } |
这里就定义了一个组件会有的4种状态
实现接口的启停组件方法,方法体中只有一个状态的赋值,具体实现,我们来看一个具体的Source——ExecSource
读取配置方面很简单,这里就不说了,看下start方法
public void start() { logger.info("Exec source starting with command:{}", command); executor = Executors.newSingleThreadExecutor(); runner = new ExecRunnable(shell, command, getChannelProcessor(), sourceCounter, restart, restartThrottle, logStderr, bufferCount, batchTimeout, charset); // FIXME: Use a callback-like executor / future to signal us upon failure. runnerFuture = executor.submit(runner); /* * NB: This comes at the end rather than the beginning of the method because * it sets our state to running. We want to make sure the executor is alive * and well first. */ sourceCounter.start(); super.start(); logger.debug("Exec source started"); } |
该方法内部就是启动了一个线程去执行我们配置的终端命令
前面一篇文章也说过从入口分析如何调用到该start方法,以及调用频率:http://blog.csdn.net/simonchi/article/details/42970373
2、channel
对于通道来说,最重要的就是event的维护,flume的核心就是要中转这些event,所以event一定不能出事
Channel接口定义如下:
@InterfaceAudience.Public @InterfaceStability.Stable public interface Channel extends LifecycleAware, NamedComponent { /** * <p>Puts the given event into the channel.</p> * <p><strong>Note</strong>: This method must be invoked within an active * {@link Transaction} boundary. Failure to do so can lead to unpredictable * results.</p> * @param event the event to transport. * @throws ChannelException in case this operation fails. * @see org.apache.flume.Transaction#begin() */ public void put(Event event) throws ChannelException; /** * <p>Returns the next event from the channel if available. If the channel * does not have any events available, this method must return {@code null}. * </p> * <p><strong>Note</strong>: This method must be invoked within an active * {@link Transaction} boundary. Failure to do so can lead to unpredictable * results.</p> * @return the next available event or {@code null} if no events are * available. * @throws ChannelException in case this operation fails. * @see org.apache.flume.Transaction#begin() */ public Event take() throws ChannelException; /** * @return the transaction instance associated with this channel. */ public Transaction getTransaction(); } |
通道中的event全部都在事务的管理之中
先来看看这个事务的定义
public interface Transaction { public enum TransactionState {Started, Committed, RolledBack, Closed }; /** * <p>Starts a transaction boundary for the current channel operation. If a * transaction is already in progress, this method will join that transaction * using reference counting.</p> * <p><strong>Note</strong>: For every invocation of this method there must * be a corresponding invocation of {@linkplain #close()} method. Failure * to ensure this can lead to dangling transactions and unpredictable results. * </p> */ public void begin(); /** * Indicates that the transaction can be successfully committed. It is * required that a transaction be in progress when this method is invoked. */ public void commit(); /** * Indicates that the transaction can must be aborted. It is * required that a transaction be in progress when this method is invoked. */ public void rollback(); /** * <p>Ends a transaction boundary for the current channel operation. If a * transaction is already in progress, this method will join that transaction * using reference counting. The transaction is completed only if there * are no more references left for this transaction.</p> * <p><strong>Note</strong>: For every invocation of this method there must * be a corresponding invocation of {@linkplain #begin()} method. Failure * to ensure this can lead to dangling transactions and unpredictable results. * </p> */ public void close(); } |
和我们想想中的一样,也就是一些标准的事务方法的定义,和一个事务状态的枚举类型的定义
基本事务语义抽象类是对它的实现BasicTransactionSemantics
该类定义了两个属性
state状态和initialThreadId,id是唯一的,用来标识事务
构造方法中会赋值为NEW状态,并获取当前事务的一个ID值
重点来看下如下几个方法的具体实现:
protected void doBegin() throws InterruptedException {} protected abstract void doPut(Event event) throws InterruptedException; protected abstract Event doTake() throws InterruptedException; protected abstract void doCommit() throws InterruptedException; protected abstract void doRollback() throws InterruptedException; protected void doClose() {} |
1、doBegin
没什么好说的,就是检查状态是否NEW,ID是否匹配,没有问题后,将状态修改为OPEN,表示事务打开
2、doPut
检查ID是否匹配,状态是否打开,event是否为空,为空当然这个put就没意义了
关键看具体是怎么put的?
在FileChannel中有个内部静态类
static class FileBackedTransaction extends BasicTransactionSemantics
private final LinkedBlockingDeque<FlumeEventPointer> takeList; private final LinkedBlockingDeque<FlumeEventPointer> putList; |
这分别定义了两个双向队列,用于拿和放
protected void doPut(Event event) throws InterruptedException { channelCounter.incrementEventPutAttemptCount(); if(putList.remainingCapacity() == 0) { throw new ChannelException("Put queue for FileBackedTransaction " + "of capacity " + putList.size() + " full, consider " + "committing more frequently, increasing capacity or " + "increasing thread count. " + channelNameDescriptor); } // this does not need to be in the critical section as it does not // modify the structure of the log or queue. if(!queueRemaining.tryAcquire(keepAlive, TimeUnit.SECONDS)) { throw new ChannelFullException("The channel has reached it‘s capacity. " + "This might be the result of a sink on the channel having too " + "low of batch size, a downstream system running slower than " + "normal, or that the channel capacity is just too low. " + channelNameDescriptor); } boolean success = false; log.lockShared(); try { FlumeEventPointer ptr = log.put(transactionID, event); Preconditions.checkState(putList.offer(ptr), "putList offer failed " + channelNameDescriptor); queue.addWithoutCommit(ptr, transactionID); success = true; } catch (IOException e) { throw new ChannelException("Put failed due to IO error " + channelNameDescriptor, e); } finally { log.unlockShared(); if(!success) { // release slot obtained in the case // the put fails for any reason queueRemaining.release(); } } } |
第一行,跟监控的度量信息有关,表示即将放入通道的event数量+1,监控度量请参考:http://blog.csdn.net/simonchi/article/details/43270461
1、检查队列的剩余空间
2、keepAlive秒时间内获取一个共享信号量,说明put的过程是互斥的
如果该时间内没有成功获取该信号量,那么event放入失败
3、FlumeEventPointer是用来做检查点机制的,因为这是文件通道,会用日志记录的
1、将event和事务id绑定到Pointer上
2、将pointer放入队列尾部
3、通道中的事件队列FlumeEventQueue添加一个未提交的事件,绑定了事务ID
4、释放共享信号量
3、doTake
protected Event doTake() throws InterruptedException { channelCounter.incrementEventTakeAttemptCount(); if(takeList.remainingCapacity() == 0) { throw new ChannelException("Take list for FileBackedTransaction, capacity " + takeList.size() + " full, consider committing more frequently, " + "increasing capacity, or increasing thread count. " + channelNameDescriptor); } log.lockShared(); /* * 1. Take an event which is in the queue. * 2. If getting that event does not throw NoopRecordException, * then return it. * 3. Else try to retrieve the next event from the queue * 4. Repeat 2 and 3 until queue is empty or an event is returned. */ try { while (true) { FlumeEventPointer ptr = queue.removeHead(transactionID); if (ptr == null) { return null; } else { try { // first add to takeList so that if write to disk // fails rollback actually does it‘s work Preconditions.checkState(takeList.offer(ptr), "takeList offer failed " + channelNameDescriptor); log.take(transactionID, ptr); // write take to disk Event event = log.get(ptr); return event; } catch (IOException e) { throw new ChannelException("Take failed due to IO error " + channelNameDescriptor, e); } catch (NoopRecordException e) { LOG.warn("Corrupt record replaced by File Channel Integrity " + "tool found. Will retrieve next event", e); takeList.remove(ptr); } catch (CorruptEventException ex) { if (fsyncPerTransaction) { throw new ChannelException(ex); } LOG.warn("Corrupt record found. Event will be " + "skipped, and next event will be read.", ex); takeList.remove(ptr); } } } } finally { log.unlockShared(); } } |
1、剩余容量检查
2、检查点机制,日志记录操作,从头部取event
3、从takeList中删除该event
4、doCommit
protected void doCommit() throws InterruptedException { int puts = putList.size(); int takes = takeList.size(); if(puts > 0) { Preconditions.checkState(takes == 0, "nonzero puts and takes " + channelNameDescriptor); log.lockShared(); try { log.commitPut(transactionID); channelCounter.addToEventPutSuccessCount(puts); synchronized (queue) { while(!putList.isEmpty()) { if(!queue.addTail(putList.removeFirst())) { StringBuilder msg = new StringBuilder(); msg.append("Queue add failed, this shouldn‘t be able to "); msg.append("happen. A portion of the transaction has been "); msg.append("added to the queue but the remaining portion "); msg.append("cannot be added. Those messages will be consumed "); msg.append("despite this transaction failing. Please report."); msg.append(channelNameDescriptor); LOG.error(msg.toString()); Preconditions.checkState(false, msg.toString()); } } queue.completeTransaction(transactionID); } } catch (IOException e) { throw new ChannelException("Commit failed due to IO error " + channelNameDescriptor, e); } finally { log.unlockShared(); } } else if (takes > 0) { log.lockShared(); try { log.commitTake(transactionID); queue.completeTransaction(transactionID); channelCounter.addToEventTakeSuccessCount(takes); } catch (IOException e) { throw new ChannelException("Commit failed due to IO error " + channelNameDescriptor, e); } finally { log.unlockShared(); } queueRemaining.release(takes); } putList.clear(); takeList.clear(); channelCounter.setChannelSize(queue.getSize()); } |
1、如果putList不为空,提交的是放入通道的事件数量
2、如果takeList不为空,提交的是从通道拿走的事件数量
5、doRollback
protected void doRollback() throws InterruptedException { int puts = putList.size(); int takes = takeList.size(); log.lockShared(); try { if(takes > 0) { Preconditions.checkState(puts == 0, "nonzero puts and takes " + channelNameDescriptor); synchronized (queue) { while (!takeList.isEmpty()) { Preconditions.checkState(queue.addHead(takeList.removeLast()), "Queue add failed, this shouldn‘t be able to happen " + channelNameDescriptor); } } } putList.clear(); takeList.clear(); queue.completeTransaction(transactionID); channelCounter.setChannelSize(queue.getSize()); log.rollback(transactionID); } catch (IOException e) { throw new ChannelException("Commit failed due to IO error " + channelNameDescriptor, e); } finally { log.unlockShared(); // since rollback is being called, puts will never make it on // to the queue and we need to be sure to release the resources queueRemaining.release(puts); } } |
在此之前,putList,takeList都没有clear,所以这里可以对着两个双向队列回滚操作
以上是文件通道的实现,如果是内存通道,就没有log的检查点记录了,简单多了,不需要维护状态了。
3、sink
sink的接口定义如下:
@InterfaceAudience.Public @InterfaceStability.Stable public interface Sink extends LifecycleAware, NamedComponent { /** * <p>Sets the channel the sink will consume from</p> * @param channel The channel to be polled */ public void setChannel(Channel channel); /** * @return the channel associated with this sink */ public Channel getChannel(); /** * <p>Requests the sink to attempt to consume data from attached channel</p> * <p><strong>Note</strong>: This method should be consuming from the channel * within the bounds of a Transaction. On successful delivery, the transaction * should be committed, and on failure it should be rolled back. * @return READY if 1 or more Events were successfully delivered, BACKOFF if * no data could be retrieved from the channel feeding this sink * @throws EventDeliveryException In case of any kind of failure to * deliver data to the next hop destination. */ public Status process() throws EventDeliveryException; public static enum Status { READY, BACKOFF } } |
sink与一个通道连接,并消费通道中的events,把它们发送到一个配置的目的地
其实和source的原理大部分相同,同样有一个AbstractSink
我们同样看一个具体实现吧,HDFSEventSink
看它的process方法
public Status process() throws EventDeliveryException { Channel channel = getChannel(); Transaction transaction = channel.getTransaction(); List<BucketWriter> writers = Lists.newArrayList(); transaction.begin(); ………………………… transaction.commit(); if (txnEventCount < 1) { return Status.BACKOFF; } else { sinkCounter.addToEventDrainSuccessCount(txnEventCount); return Status.READY; } } catch (IOException eIO) { transaction.rollback(); LOG.warn("HDFS IO error", eIO); return Status.BACKOFF; } catch (Throwable th) { transaction.rollback(); LOG.error("process failed", th); if (th instanceof Error) { throw (Error) th; } else { throw new EventDeliveryException(th); } } finally { transaction.close(); } } |
这里可以看到,flume-ng在sink端是有事务控制的
事务从 从通道中取event开始,到sink到下一个目的地结束
在这个过程中,任意的失败都会导致事务的回滚,这就保证数据了一致性。